Research Article
BibTex RIS Cite
Year 2023, , 110 - 117, 31.12.2023
https://doi.org/10.46876/ja.1386405

Abstract

References

  • Ahamed, S., Rakib, M. R. H., & Jalil, M. A. (2021). Forage growth, biomass yield and nutrient content of two different hybrid napier cultivars grown in Bangladesh. Bangladesh Journal of Animal Science, 50(1), 43-49.
  • Akyıldız A. R. (1986). Yem bilgisi ve teknolojisi (2. Basım). Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 974, s.286, Ankara-Türkiye.
  • AOAC. (1990). Official method of analysis. Association of offici alanalytical chemists 15th.edition, Washington DC, USA, s. 66.
  • Blümmel, M., & Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68, 107–117.
  • Blümmel, M., Makkar, H. P. S., Chisanga, G., Mtimuni, J., & Becker, K. (1997a). The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69(1-3), 131-141.
  • Blümmel, M., Steingass, H., & Becker, K. (1997b). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77, 911-921.
  • Cappellozza, B. I., Bohnert, D. W., Schauer, C. S., Falck, S. J., Vanzant, E. S., Harmon, D. L., & Cooke, R. F. (2013). Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Science, 155(2-3), 214-222.
  • Dowling, C. (2012). Marker-assisted Verification of Hybrids in Pearl Millet-napiergrass (Pennisetum Glaucum [L.] R. Br. X Pennisetum Purpureum Schumach.) (Doctoral dissertation, Texas A & M University).
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbaniases banand Cardu uspycno cephalus leaves and Fenugreek (Trigonella foenum-graecum L) seed sand the irextract on partitioning of nutrientsfromroughage-andconcentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Khan, Z. R., Midega, C. A. O., Wadhams, L. J., Pickett, J. A., & Mumuni, A. (2007). Evaluation of Napier grass (Pennisetum purpureun) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push-pull strategy Entomologia Experimentalis et Applicata, 124, 201-211.
  • Kutlu, H. R. (2001). Yemler bilgisi ve yem teknolojisi. Çukurova Üniversitesi, Ziraat Fak. Yayınları (Ders Notu) Adana. s. 279.
  • Lopez, S., Makkar, H. P. S., & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies, 191-231.
  • Lounglawan, P., Lounglawan, W., & Suksombat, W. (2014). Effect of cutting interval and cutting height on yield and chemical composition of King Napier grass (Pennisetum purpureum x Pennisetum americanum). APCBEE procedia, 8, 27-31.
  • Ma, Q. (1998). Greenhouse gases: refining the role of carbon dioxide. NASA Goddard Institute for Space Studies. http://www.giss.nasa.gov/research/intro/ma, 1.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of digestibility and metabolizable energy content of ruminant feed stuffs from the gas production when the yare incubated with Rumen liquor in vitro. Journal of Agricultural Science, Cambridge, 92: 217-222.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development, 28, 7-55.
  • Mohamad, S. S. S., Kamaruddin, N. A., & Ting, J. Y. (2022). Study on Chemical Composition of Napier Pak Chong (Pennisetum purpureum x Pennisetum glaucum) Harvested at Different Growth Stages. Journal of Agrobiotechnology, 13(1S), 24-30.
  • Nauman, C., & Bassler, R. (1993). Die chemische Untersuchung von Futtermitteln. Methodenbuch, Band III. 3. Erg.,VDLUFA-Verlag, Darmstadt.
  • Norton, B. W. (2003). The nutritive value of tree legumes. http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gut t-shel/x5556e0j.htm. pp.1-10.
  • Polley, H. W., Briske, D. D., Morgan, J.A., Wolter, K., Bailey, D.W., & Brown, J. R. (2013). Climate Change and North American Rangelands: Trends, Projections, and Implications. Rangeland Ecological and Management, 66(5), 493–511.
  • Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management 16, 145-163.
  • Sampath, K. T., Wood, C. D., & Prasad, C. S. (1995). Effect of urea and by‐ products on the in‐ vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. Journal of the Science of Food and Agriculture, 67(3), 323-328.
  • Seyedin, S. M. V., Zeidi, A., Chamanehpour, E., Nasri, M. H. F., & Vargas-Bello-Pérez, E. (2022). Methane Emission: Strategies to Reduce Global Warming in Relation to Animal Husbandry Units with Emphasis on Ruminants. Sustainability, 14(24), 16897.
  • Sirait, J. (2018). Dwarf elephant grass (Pennisetum purpureum cv. Mott) as forage for ruminant. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences 27(4), 167-176.
  • Swain, P. S., Dominic, G., Bhakthavatsalam, K. V. S., & Terhuja, M. (2016). Impact of ruminants on global warming: Indian and global context. Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building: Exploring Potential Adaptation Strategies for Bio-resource Conservation and Livelihood Development, 83-97.
  • Şehu, A. (2002). Yemlerin tanımı, sınıflandırılması ve değerliliğini etkileyen faktörler. Yemler Yem Hijyeni ve Teknolojisi. S. 1-11.
  • Van Dyke, N. J., & Anderson, P. M. (2000). Interpreting a Forage Analysis. Alabama Cooperative Extension Circular ANR-890.
  • Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell university press.
  • Van Soest, P. J., Robertson, J. D., & Lewis, B. A. (1991). Methods for Dietry Fibre, Neutral Detergent Fibre and Non-Starch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74, 3583-3597.
  • Woodard, K. R., & Prine, G. M. (1991). Forage yield and quality of Elephant grass as affected by harvesting frequency and genotype. Agronomy Journal, 83(3), 541-546.
  • Wilson, J. R. (1994). Cell wall characteristics in relation to forage digestion by ruminants. . The Journal of Agricultural Science, 122(2), 173-182.
  • Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43(10), 1452-1459.

Assessment of Nutritional Potential and Methane Mitigation Efficacy of Napier Grass Cultivars

Year 2023, , 110 - 117, 31.12.2023
https://doi.org/10.46876/ja.1386405

Abstract

Napier grass is cultivated as a high-yielding forage crop and widely utilized in the nutrition of grazing animals such as cattle and goats due to its rapid growth rate, expansive leaf surface, and ability to thrive even in low-quality soils, making it a valuable animal feed option. In this study, the chemical compositions, in vitro gas (GP) and methane (CH4) production, metabolizable energy (ME), organic matter digestibility (OMD), true digestible dry matter (TDDM), microbial protein (MP), partitioning factor (PF), microbial protein synthesis efficiency (MPSE, and relative feed values (RFV) of the grasses Packhong1 (Penisetum purpureum x Penisetum americanum), Chinese Pennisetum (Penisetum purpureum x Penisetum alopecurides), and Dwarf Elephant (Pennisetum purpureum cv. Mott) were investigated. Significant differences were found in the chemical contents of napier varieties used in the study (p<0.05). The crude protein (CP) values of the Napier grass varieties were 12.21, 13.58, and 12.04%, while the acid detergent fibre (ADF) values were 51.91, 50.58, and 47.09%, respectively. Following a 24-hour incubation period, GP values were 70.16, 73.42, and 85.36 ml, with corresponding CH4 of 13.08, 16.68, and 16.08%. The TDDM contents were measured at 231.96, 253.82, and 239.61, and the PF values were found to be 3.58, 3.75, and 3.04. The findings highlight variations in chemical composition and GP characteristics among the varieties, offering insights for more efficient feed utilization and environmental sustainability in livestock management. In conclusion, additional in vivo studies are warranted to assess the impact of Napier grass varieties on feed intake.

References

  • Ahamed, S., Rakib, M. R. H., & Jalil, M. A. (2021). Forage growth, biomass yield and nutrient content of two different hybrid napier cultivars grown in Bangladesh. Bangladesh Journal of Animal Science, 50(1), 43-49.
  • Akyıldız A. R. (1986). Yem bilgisi ve teknolojisi (2. Basım). Ankara Üniversitesi Ziraat Fakültesi Yayınları No: 974, s.286, Ankara-Türkiye.
  • AOAC. (1990). Official method of analysis. Association of offici alanalytical chemists 15th.edition, Washington DC, USA, s. 66.
  • Blümmel, M., & Lebzien, P. (2001). Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68, 107–117.
  • Blümmel, M., Makkar, H. P. S., Chisanga, G., Mtimuni, J., & Becker, K. (1997a). The prediction of dry matter intake of temperate and tropical roughages from in vitro digestibility/gas-production data, and the dry matter intake and in vitro digestibility of African roughages in relation to ruminant liveweight gain. Animal Feed Science and Technology, 69(1-3), 131-141.
  • Blümmel, M., Steingass, H., & Becker, K. (1997b). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77, 911-921.
  • Cappellozza, B. I., Bohnert, D. W., Schauer, C. S., Falck, S. J., Vanzant, E. S., Harmon, D. L., & Cooke, R. F. (2013). Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Science, 155(2-3), 214-222.
  • Dowling, C. (2012). Marker-assisted Verification of Hybrids in Pearl Millet-napiergrass (Pennisetum Glaucum [L.] R. Br. X Pennisetum Purpureum Schumach.) (Doctoral dissertation, Texas A & M University).
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbaniases banand Cardu uspycno cephalus leaves and Fenugreek (Trigonella foenum-graecum L) seed sand the irextract on partitioning of nutrientsfromroughage-andconcentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89.
  • Khan, Z. R., Midega, C. A. O., Wadhams, L. J., Pickett, J. A., & Mumuni, A. (2007). Evaluation of Napier grass (Pennisetum purpureun) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push-pull strategy Entomologia Experimentalis et Applicata, 124, 201-211.
  • Kutlu, H. R. (2001). Yemler bilgisi ve yem teknolojisi. Çukurova Üniversitesi, Ziraat Fak. Yayınları (Ders Notu) Adana. s. 279.
  • Lopez, S., Makkar, H. P. S., & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies, 191-231.
  • Lounglawan, P., Lounglawan, W., & Suksombat, W. (2014). Effect of cutting interval and cutting height on yield and chemical composition of King Napier grass (Pennisetum purpureum x Pennisetum americanum). APCBEE procedia, 8, 27-31.
  • Ma, Q. (1998). Greenhouse gases: refining the role of carbon dioxide. NASA Goddard Institute for Space Studies. http://www.giss.nasa.gov/research/intro/ma, 1.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of digestibility and metabolizable energy content of ruminant feed stuffs from the gas production when the yare incubated with Rumen liquor in vitro. Journal of Agricultural Science, Cambridge, 92: 217-222.
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development, 28, 7-55.
  • Mohamad, S. S. S., Kamaruddin, N. A., & Ting, J. Y. (2022). Study on Chemical Composition of Napier Pak Chong (Pennisetum purpureum x Pennisetum glaucum) Harvested at Different Growth Stages. Journal of Agrobiotechnology, 13(1S), 24-30.
  • Nauman, C., & Bassler, R. (1993). Die chemische Untersuchung von Futtermitteln. Methodenbuch, Band III. 3. Erg.,VDLUFA-Verlag, Darmstadt.
  • Norton, B. W. (2003). The nutritive value of tree legumes. http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gut t-shel/x5556e0j.htm. pp.1-10.
  • Polley, H. W., Briske, D. D., Morgan, J.A., Wolter, K., Bailey, D.W., & Brown, J. R. (2013). Climate Change and North American Rangelands: Trends, Projections, and Implications. Rangeland Ecological and Management, 66(5), 493–511.
  • Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate risk management 16, 145-163.
  • Sampath, K. T., Wood, C. D., & Prasad, C. S. (1995). Effect of urea and by‐ products on the in‐ vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. Journal of the Science of Food and Agriculture, 67(3), 323-328.
  • Seyedin, S. M. V., Zeidi, A., Chamanehpour, E., Nasri, M. H. F., & Vargas-Bello-Pérez, E. (2022). Methane Emission: Strategies to Reduce Global Warming in Relation to Animal Husbandry Units with Emphasis on Ruminants. Sustainability, 14(24), 16897.
  • Sirait, J. (2018). Dwarf elephant grass (Pennisetum purpureum cv. Mott) as forage for ruminant. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences 27(4), 167-176.
  • Swain, P. S., Dominic, G., Bhakthavatsalam, K. V. S., & Terhuja, M. (2016). Impact of ruminants on global warming: Indian and global context. Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building: Exploring Potential Adaptation Strategies for Bio-resource Conservation and Livelihood Development, 83-97.
  • Şehu, A. (2002). Yemlerin tanımı, sınıflandırılması ve değerliliğini etkileyen faktörler. Yemler Yem Hijyeni ve Teknolojisi. S. 1-11.
  • Van Dyke, N. J., & Anderson, P. M. (2000). Interpreting a Forage Analysis. Alabama Cooperative Extension Circular ANR-890.
  • Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell university press.
  • Van Soest, P. J., Robertson, J. D., & Lewis, B. A. (1991). Methods for Dietry Fibre, Neutral Detergent Fibre and Non-Starch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74, 3583-3597.
  • Woodard, K. R., & Prine, G. M. (1991). Forage yield and quality of Elephant grass as affected by harvesting frequency and genotype. Agronomy Journal, 83(3), 541-546.
  • Wilson, J. R. (1994). Cell wall characteristics in relation to forage digestion by ruminants. . The Journal of Agricultural Science, 122(2), 173-182.
  • Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43(10), 1452-1459.
There are 32 citations in total.

Details

Primary Language English
Subjects Animal Feeding
Journal Section Research Articles
Authors

Yakup Bilal 0000-0001-9785-5395

Bilal Selçuk 0000-0001-9136-5707

Tuğba Bakır 0000-0003-2185-7137

Emrah Kaya 0000-0001-7337-0406

Adem Kamalak 0000-0003-0967-4821

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date November 5, 2023
Acceptance Date November 20, 2023
Published in Issue Year 2023

Cite

APA Bilal, Y., Selçuk, B., Bakır, T., Kaya, E., et al. (2023). Assessment of Nutritional Potential and Methane Mitigation Efficacy of Napier Grass Cultivars. Journal of Agriculture, 6(2), 110-117. https://doi.org/10.46876/ja.1386405