Araştırma Makalesi
BibTex RIS Kaynak Göster

Kaplamasız Maş Fasulyesinin Tek Tane Ekiminde Ekici Performansının Laboratuvar Ölçeğinde Değerlendirilmesi

Yıl 2025, Cilt: 8 Sayı: 1, 43 - 52, 30.06.2025
https://doi.org/10.46876/ja.1635354

Öz

Küçük tohumların tek tane ekiminde tohum boyutu ve şeklinin yanı sıra, tohumların plaka deliklerine tutunma sürecinde ortaya çıkan elektriksel kuvvetin etkisiyle son derece önemli problemler yaşanabilmektedir. Bu sorunun üstesinden gelebilmek için küçük tohumlar genellikle ekilmeden önce kaplanmaktadır. Ancak kaplama işleminin maliyetli olmasından dolayı, küçük taneli tohumların kaplama yapılmaksızın, uygun işletme parametrelerinin seçimiyle ekilmesi bu çalışmanın amacını oluşturmuştur. Bu amaçla, farklı ilerleme hızlarında (0.5, 1.0 ve 1.5 m s-1) ve farklı ekim normlarında (0.67, 1.0 ve 2.0 kg ha-1) maş fasulyesi kullanılarak faktöriyel deneme deseni olarak dizayn edilen çalışmada, ekim ünitesinin performansı laboratuvar koşullarında değerlendirilmiştir. Çalışmanın sonuçlarına, sıra üzeri tohum dağılım düzgünlüğünün ekim normu ve ilerleme hızının artışından olumsuz etkilendiği ve ekim kalitesinin bozulduğu tespit edilmiştir. Bununla birlikte, ekim kalitesinin göstergesi olan kabul edilebilir tohum aralığı oranı değerleri, 0.5, 1.0 ve 1.5 m s-1 ilerleme hızlarında “ORTA”, 0.67 ve 1.0 kg ha-1 ekim normlarında “İYİ” ve 2.0 kg ha-1 ekim normunda “YETERSİZ” bulunmuştur. Tohum dağılımı düzgünlüğü açısından en iyi değerler ise 0.5 m s-1 ilerleme hızında ve 0.67 kg ha-1 ekim normunda elde edilmiştir. Bu sonuçlar, bin tohum ağırlığı 5 g olan maş fasulyesinin düşük ilerleme hızı ve ekim normlarında tek tane ekiminin yapılabileceğini göstermektedir.

Teşekkür

Bu çalışma, Seher Dinler yürütücülüğünde TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destek Programı kapsamında, 2022/2 döneminde desteklenmiştir.

Kaynakça

  • Afzal, I., Javed, T., Amirkhani, M., Taylor, A.G., 2020. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture, 10(11), 526. https://doi.org/10.3390/agriculture10110526
  • Asabe, 2005. American Society of Agricultural Engineers (ASAE). Cubes, Pellets, and Crumbles—Definitions and Methods for Determining Density, Durability, and Moisture Content, ASAE S269.4 DEC01. St. Joseph Mich. USA.
  • Bracy, R.P., Parish, R.L., McCoy J.E., 1999. Precision seeder uniformity varies with theoretical spacing. Horttechnology 9(1), 47-50 https://doi.org/10.21273/horttech.9.1.47
  • Brooks, D., Church, B., 1987. Drill performance assessment: a changed approach. British Sugar Beet Review, 55(4), 50-51.
  • Deividson, L.O., Rosane, F., 2014. Usage of the DFRobot RB-DFR-49 Infrared sensor to detect maize seed passage on a conveyor belt. Computers and Electronics in Agriculture, 102, 106–111.
  • Dongyan, H., Honglei, J., Yue, Q., Longtu, Z., Honggang, L., 2013. Seeding monitor system for planter based on polyvinylidence fluroride piezoelectric film. Transactions of the Chinese Society of Agricultural Engineering, 23, 15–22.
  • Günal, M.E., Kuş, E., 2021. Evaluation of parameters effective to performance of vacuum planter in single-seed sowing of the chickpea. Fresenius Environmental Bulletin, 11, 12140–12145.
  • Hacıyusufoğlu, A.F., Akbaş, T., Şimşek, E., 2015. Implement of the method of seed coating with pellet on some small-diameter seeds. Journal of Agricultural Machinery Science, 11(3), 257-263.
  • Haotun L, Jieyu R, Xin L, Shixiong L, Gang W and Yongjun Z (2018) Review of the monitoring systems of the machine for precision sowing and fertilization of wheat. In Proceedings of the ASABE 2018 Annual International Meeting, Austin, TX, USA, 29 July–1 August 2018; p. 1800736.
  • Hofman, V., 1988. Maximum yields need accurate planting. The Sunflower, 14(1), 10-11.
  • Hollowell, W., 1992. Drill performance assessments. British Sugar Beet Review, 50(3), 13-15.
  • Hudspeth, E.B., Wanjura, D.F., 1970. A Planter for precision depth and placement of cottonseed. Transactions of the ASAE, 13(2), 153-154.
  • Jakub, L., Václav, K., Václav, P., František, K., 2017. Capacitive throughput sensor for plant materials-effects of frequency and moisture content. Computers and Electronics in Agriculture, 133, 22–29.
  • Jasa, P.J., Dickey, E.C., 1982. Tillage factors affecting corn seed spacing. Transactions of the ASAE, 25(6), 1516-1519.
  • Kachman, S.D., Smith, J.A., 1995. Alternative measures of accuracy in plant spacing for planters using single seed metering. Transactions of the ASAE, 38(2), 379 – 387.
  • Karayel, D., Özmerzi, A., 2001. Hava emişli bir tek dane ekici düzen ile kavun ve hıyar ekiminde sıra üzeri uzaklık ve ilerleme hızının ekim düzgünlüğüne etkisi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 63-67.
  • Karayel, D., Wiesehoff, M., Özmerzi, A., Müller, J., 2006. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. Computers and Electronics in Agriculture, 50, 89–96.
  • Klüver, B., 1991. Ablagegenavigkeit Von Einzelkornsaegeraeten für körnerleguminosen. Forschungsberricht Agrartechnik des Arbeitskreises Forschung und Lehre der Max Eyth Gesellschaft, Nr. 215, Kiel.
  • Kocher, M.F., Lan, Y., Chen, C., Smith, J.A., 1998. Opto-electronic sensor systems for rapid evaluation of planter seed spacing uniformity. Transactions of the ASAE, 41(1), 237-245.
  • Kuş, E., 2014. Determination of effects of drop height of seed and ground speed on sowing qualification for conventional and reduced tillage conditions in precision vacuum seeders. PhD Thesis, Ataturk University (Unpublished), Turkey.
  • Kuş, E., 2021a. An Attempt to Evaluate the Performance Parameters of a Precision Vacuum Seeder in Different Seed Drop Height. Journal of the Institute of Science and Technology, 11(3), 1846-1853.
  • Kuş, E., 2021b. Evaluation of Some Operational Parameters of a Vacuum Single-Seed Planter in Maize Sowing. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 27(3), 327-334.
  • Kuş, E., 2021c. Field-scale evaluation of parameters affecting planter vibration in single seed planting. Measurement, 184.
  • Liming, Z., Xiaochao, Z., Yanwei, Y., 2010. Design of capacitance seed rate sensor of wheat planter. Transactions of the Chinese Society of Agricultural Engineering, 10, 99–103.
  • Liu, W., Hu, J., Zhao, X., Pan, H., Lakhiar, I.A., Wang, W., Zhao, J., 2019. Development and Experimental Analysis of a Seeding Quantity Sensor for the Precision Seeding of Small Seeds. Sensors (Basel), 19(23), 5191. doi: 10.3390/s19235191. PMID: 31783541; PMCID: PMC6928712.
  • Marko, K., Dusan, R., Dragi, R., Lazar, S., Nebojsa, D., Vladimir, C., Natasa, L., 2018. Corn seeding process fault cause analysis based on a theoretical and experimental approach. Computers and Electronics in Agriculture, 151, 207–218.
  • Mohsenin, N.N., 1980. Physical Properties of Plant and Animal Material. New York: Gordon and Breach.
  • Ogunjimi, L.A.O., Aviara, N.A., Aregbesola, O.A., 2002. Some engineering properties of locust bean seed. Journal of Food Engineering, 55, 95-99.
  • Önal, İ., 2011. Ekim Bakım ve Gübreleme Makinaları. Ege Üniversitesi Ziraat Fakültesi Yayınları, 623, İzmir.
  • Parish, R.L., Bergeron, P.E. and Bracy, R.P., 1991. Comparison of vacuum and belt seeders for vegetable planting. Applıed Engıneerıng in Agrıculture, 7(5), 537-540.
  • Rocha, I., Ma Y., Souza-Alonso, P., Vosátka, M., Freitas, H., Oliveira, R.S., 2019. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 10:1357. doi: 10.3389/fpls.2019.01357
  • Saxena, R.C., Varma, S., 1973. Effect of moisture on the flow characteristics of granular fertilizer. Technology, 10(1-2), 42-45.
  • Singh, R.C., Singh, G., Saraswat, D.C., 2005. Optimizing of design and operational parameters of pneumatic seed metering device for planting cottonseeds. Biosystem Engineering, 92(4), 429 – 438.
  • Staggenborg, S.A., Taylor, R.K., Maddux, L.D., 2004. Effect of planter speed and seed firmers on corn stand establishment. Applied Engineering in Agriculture, 20 (5), 573−580.
  • Tıknazoğlu, B., 2009. Yem Bitkileri Tarımı ve Silaj Yapımı. Samsun İl Tarım Müdürlüğü Çiftçi Eğitimi ve Yayın Şubesi Yayını. Samsun, Erişim Tarihi: 20.11.2024.
  • WaveVision Sensors. 2024. Available online: https://www.lincoprecision.com/precision-farming/precisioplanting/wavevision-sensors/ (Erişim Tarihi: 20.11.2024).
  • Youchun, D., Junqiang, Y., Kai, Z., Lili, Z., Yawen, Z., Qingxi, L., 2017. Design and experiemnt on seed flow sensing device for rapeseed precision metering device. Transactions of the Chinese Society of Agricultural Engineering, 9, 37–44.
  • Youchun, D., Lili, Z., Junqiang, Y., Kai, Z., 2018. Sensing device improvement and communication design on sowing monitoring system of precision planter for rapeseed. Transactions of the Chinese Society of Agricultural Engineering, 14, 19–26.
  • Yujing, S., Honglei, J., Deliang, R., Jingjing, Y., Yang, L., 2013. Experimental study of capacitance sensors to test seed-flow. Applied Mechanics and Materials, 347, 167–170.

Laboratory Scale of Planter Performance in Single Seed Planting of Mung Beans Without Coating

Yıl 2025, Cilt: 8 Sayı: 1, 43 - 52, 30.06.2025
https://doi.org/10.46876/ja.1635354

Öz

In single-seed planting of small seeds, extreme problems can arise due to the effects of seed size and shape, as well as the electrostatic forces generated during seed adhesion to plate holes. To overcome this issue, small seeds are usually coated before planting. However, due to the high cost of the coating process, this study aims to sow small-seeded crops without coating by selecting appropriate operating parameters. For this purpose, a factorial experimental design was applied using mung beans at different forward speeds (0.5, 1.0, and 1.5 m s-1) and planting rates (0.67, 1.0, and 2.0 kg ha-1) to evaluate the performance of the planting unit under laboratory conditions. The results showed that increasing the planting rate and forward speed negatively affected intra-row seed distribution uniformity, leading to a decline in planting quality. Furthermore, the quality of feed index, which indicates planting quality, was found to be "MODERATE" for 0.5, 1.0 ve 1.5 m s-1 forward speeds, "GOOD" at 0.67 and 1.0 kg ha-1 planting rates, and "INSUFFICIENT" at a planting rate of 2.0 kg ha-1. The best values for seed distribution uniformity were obtained at 0.5 m s-1 forward speed and 0.67 kg ha-1 planting rate. These results suggest that single-seed planting of mung beans, with a thousand-seed weight of 5 g, can be effectively performed at low forward speeds and planting rates without the need for seed coating.

Kaynakça

  • Afzal, I., Javed, T., Amirkhani, M., Taylor, A.G., 2020. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture, 10(11), 526. https://doi.org/10.3390/agriculture10110526
  • Asabe, 2005. American Society of Agricultural Engineers (ASAE). Cubes, Pellets, and Crumbles—Definitions and Methods for Determining Density, Durability, and Moisture Content, ASAE S269.4 DEC01. St. Joseph Mich. USA.
  • Bracy, R.P., Parish, R.L., McCoy J.E., 1999. Precision seeder uniformity varies with theoretical spacing. Horttechnology 9(1), 47-50 https://doi.org/10.21273/horttech.9.1.47
  • Brooks, D., Church, B., 1987. Drill performance assessment: a changed approach. British Sugar Beet Review, 55(4), 50-51.
  • Deividson, L.O., Rosane, F., 2014. Usage of the DFRobot RB-DFR-49 Infrared sensor to detect maize seed passage on a conveyor belt. Computers and Electronics in Agriculture, 102, 106–111.
  • Dongyan, H., Honglei, J., Yue, Q., Longtu, Z., Honggang, L., 2013. Seeding monitor system for planter based on polyvinylidence fluroride piezoelectric film. Transactions of the Chinese Society of Agricultural Engineering, 23, 15–22.
  • Günal, M.E., Kuş, E., 2021. Evaluation of parameters effective to performance of vacuum planter in single-seed sowing of the chickpea. Fresenius Environmental Bulletin, 11, 12140–12145.
  • Hacıyusufoğlu, A.F., Akbaş, T., Şimşek, E., 2015. Implement of the method of seed coating with pellet on some small-diameter seeds. Journal of Agricultural Machinery Science, 11(3), 257-263.
  • Haotun L, Jieyu R, Xin L, Shixiong L, Gang W and Yongjun Z (2018) Review of the monitoring systems of the machine for precision sowing and fertilization of wheat. In Proceedings of the ASABE 2018 Annual International Meeting, Austin, TX, USA, 29 July–1 August 2018; p. 1800736.
  • Hofman, V., 1988. Maximum yields need accurate planting. The Sunflower, 14(1), 10-11.
  • Hollowell, W., 1992. Drill performance assessments. British Sugar Beet Review, 50(3), 13-15.
  • Hudspeth, E.B., Wanjura, D.F., 1970. A Planter for precision depth and placement of cottonseed. Transactions of the ASAE, 13(2), 153-154.
  • Jakub, L., Václav, K., Václav, P., František, K., 2017. Capacitive throughput sensor for plant materials-effects of frequency and moisture content. Computers and Electronics in Agriculture, 133, 22–29.
  • Jasa, P.J., Dickey, E.C., 1982. Tillage factors affecting corn seed spacing. Transactions of the ASAE, 25(6), 1516-1519.
  • Kachman, S.D., Smith, J.A., 1995. Alternative measures of accuracy in plant spacing for planters using single seed metering. Transactions of the ASAE, 38(2), 379 – 387.
  • Karayel, D., Özmerzi, A., 2001. Hava emişli bir tek dane ekici düzen ile kavun ve hıyar ekiminde sıra üzeri uzaklık ve ilerleme hızının ekim düzgünlüğüne etkisi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 63-67.
  • Karayel, D., Wiesehoff, M., Özmerzi, A., Müller, J., 2006. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. Computers and Electronics in Agriculture, 50, 89–96.
  • Klüver, B., 1991. Ablagegenavigkeit Von Einzelkornsaegeraeten für körnerleguminosen. Forschungsberricht Agrartechnik des Arbeitskreises Forschung und Lehre der Max Eyth Gesellschaft, Nr. 215, Kiel.
  • Kocher, M.F., Lan, Y., Chen, C., Smith, J.A., 1998. Opto-electronic sensor systems for rapid evaluation of planter seed spacing uniformity. Transactions of the ASAE, 41(1), 237-245.
  • Kuş, E., 2014. Determination of effects of drop height of seed and ground speed on sowing qualification for conventional and reduced tillage conditions in precision vacuum seeders. PhD Thesis, Ataturk University (Unpublished), Turkey.
  • Kuş, E., 2021a. An Attempt to Evaluate the Performance Parameters of a Precision Vacuum Seeder in Different Seed Drop Height. Journal of the Institute of Science and Technology, 11(3), 1846-1853.
  • Kuş, E., 2021b. Evaluation of Some Operational Parameters of a Vacuum Single-Seed Planter in Maize Sowing. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 27(3), 327-334.
  • Kuş, E., 2021c. Field-scale evaluation of parameters affecting planter vibration in single seed planting. Measurement, 184.
  • Liming, Z., Xiaochao, Z., Yanwei, Y., 2010. Design of capacitance seed rate sensor of wheat planter. Transactions of the Chinese Society of Agricultural Engineering, 10, 99–103.
  • Liu, W., Hu, J., Zhao, X., Pan, H., Lakhiar, I.A., Wang, W., Zhao, J., 2019. Development and Experimental Analysis of a Seeding Quantity Sensor for the Precision Seeding of Small Seeds. Sensors (Basel), 19(23), 5191. doi: 10.3390/s19235191. PMID: 31783541; PMCID: PMC6928712.
  • Marko, K., Dusan, R., Dragi, R., Lazar, S., Nebojsa, D., Vladimir, C., Natasa, L., 2018. Corn seeding process fault cause analysis based on a theoretical and experimental approach. Computers and Electronics in Agriculture, 151, 207–218.
  • Mohsenin, N.N., 1980. Physical Properties of Plant and Animal Material. New York: Gordon and Breach.
  • Ogunjimi, L.A.O., Aviara, N.A., Aregbesola, O.A., 2002. Some engineering properties of locust bean seed. Journal of Food Engineering, 55, 95-99.
  • Önal, İ., 2011. Ekim Bakım ve Gübreleme Makinaları. Ege Üniversitesi Ziraat Fakültesi Yayınları, 623, İzmir.
  • Parish, R.L., Bergeron, P.E. and Bracy, R.P., 1991. Comparison of vacuum and belt seeders for vegetable planting. Applıed Engıneerıng in Agrıculture, 7(5), 537-540.
  • Rocha, I., Ma Y., Souza-Alonso, P., Vosátka, M., Freitas, H., Oliveira, R.S., 2019. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 10:1357. doi: 10.3389/fpls.2019.01357
  • Saxena, R.C., Varma, S., 1973. Effect of moisture on the flow characteristics of granular fertilizer. Technology, 10(1-2), 42-45.
  • Singh, R.C., Singh, G., Saraswat, D.C., 2005. Optimizing of design and operational parameters of pneumatic seed metering device for planting cottonseeds. Biosystem Engineering, 92(4), 429 – 438.
  • Staggenborg, S.A., Taylor, R.K., Maddux, L.D., 2004. Effect of planter speed and seed firmers on corn stand establishment. Applied Engineering in Agriculture, 20 (5), 573−580.
  • Tıknazoğlu, B., 2009. Yem Bitkileri Tarımı ve Silaj Yapımı. Samsun İl Tarım Müdürlüğü Çiftçi Eğitimi ve Yayın Şubesi Yayını. Samsun, Erişim Tarihi: 20.11.2024.
  • WaveVision Sensors. 2024. Available online: https://www.lincoprecision.com/precision-farming/precisioplanting/wavevision-sensors/ (Erişim Tarihi: 20.11.2024).
  • Youchun, D., Junqiang, Y., Kai, Z., Lili, Z., Yawen, Z., Qingxi, L., 2017. Design and experiemnt on seed flow sensing device for rapeseed precision metering device. Transactions of the Chinese Society of Agricultural Engineering, 9, 37–44.
  • Youchun, D., Lili, Z., Junqiang, Y., Kai, Z., 2018. Sensing device improvement and communication design on sowing monitoring system of precision planter for rapeseed. Transactions of the Chinese Society of Agricultural Engineering, 14, 19–26.
  • Yujing, S., Honglei, J., Deliang, R., Jingjing, Y., Yang, L., 2013. Experimental study of capacitance sensors to test seed-flow. Applied Mechanics and Materials, 347, 167–170.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarım Makine Sistemleri, Tarım Makineleri
Bölüm Araştırma Makalesi
Yazarlar

Seher Dinler 0009-0005-5186-1905

Emrah Kuş 0000-0001-6880-5591

Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 7 Nisan 2025
Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Dinler, S., & Kuş, E. (2025). Kaplamasız Maş Fasulyesinin Tek Tane Ekiminde Ekici Performansının Laboratuvar Ölçeğinde Değerlendirilmesi. Journal of Agriculture, 8(1), 43-52. https://doi.org/10.46876/ja.1635354

İletişim; 
 Tel : 0531 245 65 86