Research Article
BibTex RIS Cite

Essential oil composition of Salvia officinalis and Rosmarinus officinalis

Year 2021, , 39 - 47, 30.06.2021
https://doi.org/10.46876/ja.938170

Abstract

Secondary metabolites, especially essential oils are of the widely used phyto-chemicals for various purposes. In this regard, numerous studies have been reported on profile of these reputed metabolites in medicinal and aromatic plant (MAPs) species. Of the substantial family of the MAPs, Lamiaceae is of the reputed group with a notable number of plant species. Regarding the species of this group, sage (Salvia officinalis) and rosemary (Rosmarinus officinalis) are of the well-known and widely-studied species. Herewith the current study, we profiled the essential oil composition in leaves of both species. Accordingly, the analysis revealed that camphene (29.40%), 1,8-cineole (37.26%), camphor (13.48%), borneol (3.69%), trans-caryophyllene (5.42%), and α-thujone (5.78%) were of the predominant compounds identified for S. officinalis, whilst camphene (22.45%), 1, 8-cineole (35.36%), linalool (3.67%), camphor (10.80%), cyclohexane,(1-methylethylidene) (3.09%), α-fenchyl alcohol (3.03), 2-cyclohexen-1-one, 2-methyl-5-(1-methylethenyl) (2.12%), and endo-bornyl acetate (4.50%) were of the principal components in leaves of R. officinalis.The next studies on the relevant species might be focused on the biological activity of the essential oils.

References

  • Abbaszadeh, B., Layeghhaghighi, M., Azimi, R., & Hadi, N. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products, 144, 111893.
  • Abdelmajeed, N. A., Danial, E. N., & Ayad, H. S. (2013). The effect of environmental stress on qualitative and quantitative essential oil of aromatic and medicinal plants. Archives Des Sciences, 66(4), 100-120.
  • Açikgöz, M. A., & Kara, Ş. M. (2020). Morphogenetic, Ontogenetic and Diurnal Variability in Content And Constituents of Bitter Fennel (Foeniculum vulgare Miller var. vulgare) Essential Oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 127-134.
  • Ahmad, P., Ahanger, M. A., Singh, V. P., Tripathi, D. K., Alam, P., & Alyemeni, M. N. (Eds.). (2018). Plant metabolites and regulation under environmental stress. Academic Press.
  • Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731.
  • Alizadeh, A., & Shaabani, M. (2012). Essential oil composition, phenolic content, antioxidant and antimicrobial activity in Salvia officinalis L. cultivated in Iran. Adv Environ Biol, 6(1), 221-6.
  • Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. Plant metabolites and regulation under environmental stress, 153-167.
  • Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia horticulturae, 120(2), 271-275.
  • Bouyahya, A., Belmehdi, O., Benjouad, A., El Hassani, R. A., Amzazi, S., Dakka, N., & Bakri, Y. (2020). Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: What are the next steps?. Industrial Crops and Products, 147, 112198.
  • Çelikcan, F. (2021). Vermikompost uygulamalarının su stresi altındaki fesleğenin (Ocimum basilicum L.) büyüme, besin alımı ve sekonder metabolit içeriğine etkisinin incelenmesi. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü, Organik Tarım İşletmeciliği Anabilim dalı, Iğdır.
  • Corell, M., Garcia, M. C., Contreras, J. I., Segura, M. L., & Cermeño, P. (2012). Effect of Water Stress on S alvia officinalis L. Bioproductivity and Its Bioelement Concentrations. Communications in soil science and plant analysis, 43(1-2), 419-425.
  • Delamare, A. P. L., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food chemistry, 100(2), 603-608.
  • Es-sbihi, F. Z., Hazzoumi, Z., Aasfar, A., & Joutei, K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chemical and Biological Technologies in Agriculture, 8(1), 1-12.
  • Es-sbihi, F. Z., Hazzoumi, Z., Benhima, R., & Amrani Joutei, K. (2020). Effects of salicylic acid on growth, mineral nutrition, glandular hairs distribution and essential oil composition in Salvia officinalis L. grown under copper stress. Environmental Sustainability, 3, 199-208.
  • Gershenzon, J. (1984). Changes in the levels of plant secondary metabolites under water and nutrient stress. In Phytochemical adaptations to stress (pp. 273-320). Springer, Boston, MA.
  • Göçer, H., Yetişir, H., Ulaş, A.,, Arslan, M., & Aydın, A. (2021). Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(3), 505-514.
  • Halbesleben, J. R., Wheeler, A. R., 2008. The relative roles of engagement and embeddedness in predicting job performance and intention to leave. Work&Stress, 22(3), 242-256.
  • Hassiotis, C. N., Ntana, F., Lazari, D. M., Poulios, S., & Vlachonasios, K. E. (2014). Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Industrial crops and products, 62, 359-366.
  • Hussain, A. I., Anwar, F., Chatha, S. A. S., Jabbar, A., Mahboob, S., & Nigam, P. S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078.
  • Ielciu, I., Sevastre, B., Olah, N. K., Turdean, A., Chișe, E., Marica, R., ... & Hanganu, D. (2021). Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules, 26(6), 1737.
  • Inoue, M., & Craker, L. E. (2014). Medicinal and aromatic plants—Uses and functions. In Horticulture: Plants for People and Places, Volume 2 (pp. 645-669). Springer, Dordrecht.
  • Jafari-Sales, A., & Pashazadeh, M. (2020). Study of chemical composition and antimicrobial pro perties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. International Journal of Life Sciences and Biotechnology, 3(1), 62-69.
  • Jaspal, M. H., Ijaz, M., ul Haq, H. A., Yar, M. K., Asghar, B., Manzoor, A., ... & Hussain, J. (2021). Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat. LWT, 146, 111459.
  • Jedidi, S., Sammari, H., Selmi, H., Hosni, K., Rtibi, K., Aloui, F., ... & Sebai, H. (2021). Strong protective effects of Salvia officinalis L. leaves decoction extract against acetic acid-induced ulcerative colitis and metabolic disorders in rat. Journal of Functional Foods, 79, 104406.
  • Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control, 30(2), 463-468.
  • Karadağ, M. K., Koyuncu, M., Atalar, M. N., & Aras, A. (2021). Abdülmelik, A. R. A. S. Determination of Volatile Organic Compounds of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Ginger (Zingiber officinale) Plants using SPME/GC-MS. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 41-49.
  • Khedher, M. R. B., Khedher, S. B., Chaieb, I., Tounsi, S., & Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI journal, 16, 160.
  • Kulak, M. (2019). A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9(1), 165-189.
  • Kulak, M. (2020). Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Industrial Crops and Products, 154, 112695.
  • Kulak, M., Gul, F., & Sekeroglu, N. (2020). Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and Products, 145, 112078.
  • Kulak, M., Ozkan, A., & Bindak, R. (2019). A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further?. Scientia horticulturae, 246, 418-436.
  • Lešnik, S., Furlan, V., & Bren, U. (2021). Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochemistry Reviews, 1-56.
  • Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 100255.
  • Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and medicine, 3(2), 232-249.
  • Mohamadi, M., & Karimi, M. (2020). Effect of exogenous melatonin on growth, electrolyte leakage and antioxidant enzyme activity in rosemary under salinity stress. Journal of Plant Process and Function, 9(37), 60.
  • Nguyen, H. C., Nguyen, H. N. T., Huang, M. Y., Lin, K. H., Pham, D. C., Tran, Y. B., & Su, C. H. (2021). Optimization of aqueous enzyme‐assisted extraction of rosmarinic acid from rosemary (Rosmarinus officinalis L.) leaves and the antioxidant activity of the extract. Journal of Food Processing and Preservation, 45(3), e15221.
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: Characterization and its antiplasmodial activity. Journal of Cluster Science, 32(1), 101-109.
  • Ostadi, A., Javanmard, A., Machiani, M. A., Morshedloo, M. R., Nouraein, M., Rasouli, F., & Maggi, F. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290.
  • Ovidi, E., Laghezza Masci, V., Zambelli, M., Tiezzi, A., Vitalini, S., & Garzoli, S. (2021). Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants, 10(4), 707.
  • Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
  • Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. BBA-Gene Regul Mech 1829 (11): 1236-1247.
  • Pichersky, E., & Gang, D. R. (2000). Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science, 5(10), 439-445.
  • Raal, A., Orav, A., & Arak, E. (2007). Composition of the essential oil of Salvia officinalis L. from various European countries. Natural product research, 21(5), 406-411.
  • Raffo, A., Mozzanini, E., Nicoli, S. F., Lupotto, E., & Cervelli, C. (2020). Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. European Food Research and Technology, 246(1), 167-177.
  • Rhodes, M. J. C. (1994). Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant molecular biology, 24(1), 1-20.
  • Rodrigues, L., Póvoa, O., van den Berg, C., Figueiredo, A. C., Moldão, M., & Monteiro, A. (2013). Genetic diversity in Mentha cervina based on morphological traits, essential oils profile and ISSRs markers. Biochemical Systematics and Ecology, 51, 50-59.
  • Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant growth regulation, 34(1), 3-21.
  • Santos-Gomes, P. C., & Fernandes-Ferreira, M. (2001). Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. Journal of Agricultural and Food Chemistry, 49(6), 2908-2916.
  • Soulaimani, B., El Hidar, N., El Fakir, S. B., Mezrioui, N., Hassani, L., & Abbad, A. (2021). Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. European Journal of Integrative Medicine, 43, 101312.
  • Szumny, A., Figiel, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, Á. A. (2010). Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. Journal of Food engineering, 97(2), 253-260.
  • Taarit, M. B., Msaada, K., Hosni, K., & Marzouk, B. (2010). Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food chemistry, 119(3), 951-956.
  • Taarit, M. B., Msaada, K., Hosni, K., Hammami, M., Kchouk, M. E., & Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30(3), 333-337.
  • Tosun, A., Khan, S., Kim, Y. S., Calín-Sánchez, Á., Hysenaj, X., & Carbonell-Barrachina, A. (2014). Essential oil composition and anti-inflammatory activity of Salvia officinalis L (Lamiaceae) in murin macrophages. Tropical Journal of Pharmaceutical Research, 13(6), 937-942.
  • Venkatachalam, K. V., Kjonaas, R., & Croteau, R. (1984). Development and essential oil content of secretory glands of sage (Salvia officinalis). Plant physiology, 76(1), 148-150.
  • Webb, H., Foley, W. J., & Külheim, C. (2014). The genetic basis of foliar terpene yield: Implications for breeding and profitability of Australian essential oil crops. Plant Biotechnology, 14-1009.
  • Yavari, A., Nazeri, V., Sefidkon, F., & Hassani, M. E. (2010). Influence of some environmental factors on the essential oil variability of Thymus migricus. Natural product communications, 5(6), 1934578X1000500629.

Salvia officinalis ve Rosmarinus officinalis'in Uçucu Yağ Bileşimi

Year 2021, , 39 - 47, 30.06.2021
https://doi.org/10.46876/ja.938170

Abstract

Sekonder metabolitler, özellikle uçucu yağlar, çeşitli amaçlar için yaygın olarak kullanılan fitokimyasallardandır. Bu bağlamda, tıbbi ve aromatik bitki türlerinde bilinen bu metabolitlerin profili hakkında çok sayıda çalışma rapor edilmiştir. Çok sayıda önemli bitki türüne sahip olan Lamiaceae önemli tıbbi ve aromatik bitki gruplarındandır. Bu grubun türleriyle ilgili olarak adaçayı (Salvia officinalis) ve biberiye (Rosmarinus officinalis) bilinen ve üzerinde çokça çalışılan türlerdendir. Bu çalışma ile birlikte her iki türün yapraklarındaki uçucu yağ bileşiminin profilini çıkardık. Buna göre analiz, camphene (%29.40), 1,8-cineole (%37.26), camphor (%13.48), borneol (%3.69), trans-caryophyllene (%5.42), and α-thujone (%5.78) S. officinalis için tanımlanan baskın bileşiklerden bazıları iken, R. officinalis için tanımlanan camphene (%22.45), 1, 8-cineole (%35.36), linalool (%3.67), camphor (%10.80), cyclohexane,(1-methylethylidene) (%3.09), α-fenchyl alcohol (%3.03), 2-cyclohexen-1-one, 2-methyl-5-(1-methylethenyl) (%2.12), ve endo-bornyl acetate (%4.50) yapraklarındaki ana bileşenler olduğunu ortaya çıkardı. Belirtilmiş olan türlerle ilgili sonraki çalışmalar, uçucu yağların biyolojik aktivitesine odaklanabilir.

References

  • Abbaszadeh, B., Layeghhaghighi, M., Azimi, R., & Hadi, N. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products, 144, 111893.
  • Abdelmajeed, N. A., Danial, E. N., & Ayad, H. S. (2013). The effect of environmental stress on qualitative and quantitative essential oil of aromatic and medicinal plants. Archives Des Sciences, 66(4), 100-120.
  • Açikgöz, M. A., & Kara, Ş. M. (2020). Morphogenetic, Ontogenetic and Diurnal Variability in Content And Constituents of Bitter Fennel (Foeniculum vulgare Miller var. vulgare) Essential Oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 127-134.
  • Ahmad, P., Ahanger, M. A., Singh, V. P., Tripathi, D. K., Alam, P., & Alyemeni, M. N. (Eds.). (2018). Plant metabolites and regulation under environmental stress. Academic Press.
  • Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720-1731.
  • Alizadeh, A., & Shaabani, M. (2012). Essential oil composition, phenolic content, antioxidant and antimicrobial activity in Salvia officinalis L. cultivated in Iran. Adv Environ Biol, 6(1), 221-6.
  • Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental stress and secondary metabolites in plants: An overview. Plant metabolites and regulation under environmental stress, 153-167.
  • Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia horticulturae, 120(2), 271-275.
  • Bouyahya, A., Belmehdi, O., Benjouad, A., El Hassani, R. A., Amzazi, S., Dakka, N., & Bakri, Y. (2020). Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: What are the next steps?. Industrial Crops and Products, 147, 112198.
  • Çelikcan, F. (2021). Vermikompost uygulamalarının su stresi altındaki fesleğenin (Ocimum basilicum L.) büyüme, besin alımı ve sekonder metabolit içeriğine etkisinin incelenmesi. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü, Organik Tarım İşletmeciliği Anabilim dalı, Iğdır.
  • Corell, M., Garcia, M. C., Contreras, J. I., Segura, M. L., & Cermeño, P. (2012). Effect of Water Stress on S alvia officinalis L. Bioproductivity and Its Bioelement Concentrations. Communications in soil science and plant analysis, 43(1-2), 419-425.
  • Delamare, A. P. L., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food chemistry, 100(2), 603-608.
  • Es-sbihi, F. Z., Hazzoumi, Z., Aasfar, A., & Joutei, K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chemical and Biological Technologies in Agriculture, 8(1), 1-12.
  • Es-sbihi, F. Z., Hazzoumi, Z., Benhima, R., & Amrani Joutei, K. (2020). Effects of salicylic acid on growth, mineral nutrition, glandular hairs distribution and essential oil composition in Salvia officinalis L. grown under copper stress. Environmental Sustainability, 3, 199-208.
  • Gershenzon, J. (1984). Changes in the levels of plant secondary metabolites under water and nutrient stress. In Phytochemical adaptations to stress (pp. 273-320). Springer, Boston, MA.
  • Göçer, H., Yetişir, H., Ulaş, A.,, Arslan, M., & Aydın, A. (2021). Plant Growth, Ion Accumulation and Essential Oil Content of Salvia officinalis Mill. and S. tomentosa L. Grown under Different Salt Stress. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(3), 505-514.
  • Halbesleben, J. R., Wheeler, A. R., 2008. The relative roles of engagement and embeddedness in predicting job performance and intention to leave. Work&Stress, 22(3), 242-256.
  • Hassiotis, C. N., Ntana, F., Lazari, D. M., Poulios, S., & Vlachonasios, K. E. (2014). Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Industrial crops and products, 62, 359-366.
  • Hussain, A. I., Anwar, F., Chatha, S. A. S., Jabbar, A., Mahboob, S., & Nigam, P. S. (2010). Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Brazilian Journal of Microbiology, 41(4), 1070-1078.
  • Ielciu, I., Sevastre, B., Olah, N. K., Turdean, A., Chișe, E., Marica, R., ... & Hanganu, D. (2021). Evaluation of Hepatoprotective Activity and Oxidative Stress Reduction of Rosmarinus officinalis L. Shoots Tincture in Rats with Experimentally Induced Hepatotoxicity. Molecules, 26(6), 1737.
  • Inoue, M., & Craker, L. E. (2014). Medicinal and aromatic plants—Uses and functions. In Horticulture: Plants for People and Places, Volume 2 (pp. 645-669). Springer, Dordrecht.
  • Jafari-Sales, A., & Pashazadeh, M. (2020). Study of chemical composition and antimicrobial pro perties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. International Journal of Life Sciences and Biotechnology, 3(1), 62-69.
  • Jaspal, M. H., Ijaz, M., ul Haq, H. A., Yar, M. K., Asghar, B., Manzoor, A., ... & Hussain, J. (2021). Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat. LWT, 146, 111459.
  • Jedidi, S., Sammari, H., Selmi, H., Hosni, K., Rtibi, K., Aloui, F., ... & Sebai, H. (2021). Strong protective effects of Salvia officinalis L. leaves decoction extract against acetic acid-induced ulcerative colitis and metabolic disorders in rat. Journal of Functional Foods, 79, 104406.
  • Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control, 30(2), 463-468.
  • Karadağ, M. K., Koyuncu, M., Atalar, M. N., & Aras, A. (2021). Abdülmelik, A. R. A. S. Determination of Volatile Organic Compounds of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Ginger (Zingiber officinale) Plants using SPME/GC-MS. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 41-49.
  • Khedher, M. R. B., Khedher, S. B., Chaieb, I., Tounsi, S., & Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI journal, 16, 160.
  • Kulak, M. (2019). A Time-Course Study on Essential Oil of Rosemary (Rosmarinus officinalis) Under Drought Stress. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9(1), 165-189.
  • Kulak, M. (2020). Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Industrial Crops and Products, 154, 112695.
  • Kulak, M., Gul, F., & Sekeroglu, N. (2020). Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Industrial Crops and Products, 145, 112078.
  • Kulak, M., Ozkan, A., & Bindak, R. (2019). A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further?. Scientia horticulturae, 246, 418-436.
  • Lešnik, S., Furlan, V., & Bren, U. (2021). Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochemistry Reviews, 1-56.
  • Mahajan, M., Kuiry, R., & Pal, P. K. (2020). Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 100255.
  • Mazid, M., Khan, T. A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and medicine, 3(2), 232-249.
  • Mohamadi, M., & Karimi, M. (2020). Effect of exogenous melatonin on growth, electrolyte leakage and antioxidant enzyme activity in rosemary under salinity stress. Journal of Plant Process and Function, 9(37), 60.
  • Nguyen, H. C., Nguyen, H. N. T., Huang, M. Y., Lin, K. H., Pham, D. C., Tran, Y. B., & Su, C. H. (2021). Optimization of aqueous enzyme‐assisted extraction of rosmarinic acid from rosemary (Rosmarinus officinalis L.) leaves and the antioxidant activity of the extract. Journal of Food Processing and Preservation, 45(3), e15221.
  • Okaiyeto, K., Hoppe, H., & Okoh, A. I. (2021). Plant-based synthesis of silver nanoparticles using aqueous leaf extract of Salvia officinalis: Characterization and its antiplasmodial activity. Journal of Cluster Science, 32(1), 101-109.
  • Ostadi, A., Javanmard, A., Machiani, M. A., Morshedloo, M. R., Nouraein, M., Rasouli, F., & Maggi, F. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290.
  • Ovidi, E., Laghezza Masci, V., Zambelli, M., Tiezzi, A., Vitalini, S., & Garzoli, S. (2021). Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. Plants, 10(4), 707.
  • Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., & Bansal, Y. K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
  • Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L. (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. BBA-Gene Regul Mech 1829 (11): 1236-1247.
  • Pichersky, E., & Gang, D. R. (2000). Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in plant science, 5(10), 439-445.
  • Raal, A., Orav, A., & Arak, E. (2007). Composition of the essential oil of Salvia officinalis L. from various European countries. Natural product research, 21(5), 406-411.
  • Raffo, A., Mozzanini, E., Nicoli, S. F., Lupotto, E., & Cervelli, C. (2020). Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. European Food Research and Technology, 246(1), 167-177.
  • Rhodes, M. J. C. (1994). Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant molecular biology, 24(1), 1-20.
  • Rodrigues, L., Póvoa, O., van den Berg, C., Figueiredo, A. C., Moldão, M., & Monteiro, A. (2013). Genetic diversity in Mentha cervina based on morphological traits, essential oils profile and ISSRs markers. Biochemical Systematics and Ecology, 51, 50-59.
  • Sangwan, N. S., Farooqi, A. H. A., Shabih, F., & Sangwan, R. S. (2001). Regulation of essential oil production in plants. Plant growth regulation, 34(1), 3-21.
  • Santos-Gomes, P. C., & Fernandes-Ferreira, M. (2001). Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. Journal of Agricultural and Food Chemistry, 49(6), 2908-2916.
  • Soulaimani, B., El Hidar, N., El Fakir, S. B., Mezrioui, N., Hassani, L., & Abbad, A. (2021). Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. European Journal of Integrative Medicine, 43, 101312.
  • Szumny, A., Figiel, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, Á. A. (2010). Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. Journal of Food engineering, 97(2), 253-260.
  • Taarit, M. B., Msaada, K., Hosni, K., & Marzouk, B. (2010). Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food chemistry, 119(3), 951-956.
  • Taarit, M. B., Msaada, K., Hosni, K., Hammami, M., Kchouk, M. E., & Marzouk, B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Industrial Crops and Products, 30(3), 333-337.
  • Tosun, A., Khan, S., Kim, Y. S., Calín-Sánchez, Á., Hysenaj, X., & Carbonell-Barrachina, A. (2014). Essential oil composition and anti-inflammatory activity of Salvia officinalis L (Lamiaceae) in murin macrophages. Tropical Journal of Pharmaceutical Research, 13(6), 937-942.
  • Venkatachalam, K. V., Kjonaas, R., & Croteau, R. (1984). Development and essential oil content of secretory glands of sage (Salvia officinalis). Plant physiology, 76(1), 148-150.
  • Webb, H., Foley, W. J., & Külheim, C. (2014). The genetic basis of foliar terpene yield: Implications for breeding and profitability of Australian essential oil crops. Plant Biotechnology, 14-1009.
  • Yavari, A., Nazeri, V., Sefidkon, F., & Hassani, M. E. (2010). Influence of some environmental factors on the essential oil variability of Thymus migricus. Natural product communications, 5(6), 1934578X1000500629.
There are 56 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Mehmet Zeki Koçak 0000-0002-8368-2478

Musa Karadağ 0000-0003-2498-3403

Ferdi Çelikcan 0000-0003-4169-5841

Publication Date June 30, 2021
Submission Date May 16, 2021
Acceptance Date June 7, 2021
Published in Issue Year 2021

Cite

APA Koçak, M. Z., Karadağ, M., & Çelikcan, F. (2021). Essential oil composition of Salvia officinalis and Rosmarinus officinalis. Journal of Agriculture, 4(1), 39-47. https://doi.org/10.46876/ja.938170