Research Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 19 - 26, 31.12.2024
https://doi.org/10.46876/ja.1471583

Abstract

References

  • Bani, A., Echevarria, G., Sulçe, S., Morel, J. L., Mullai, A. 2009. In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramaWc site (Albania). Plant and Soil, 293, 79-89.
  • Baker A., Brooks R. 1989 Terrestrial higher plants which hyperaccululate metallic elements. A review of their distribution, ecology and phytochemistry//Environmental Science, Biology 1989
  • Begonia, G. B., Davis, C.D., Begonia, M. F. T., Gray, C. N. 2008. Growth Responses of Indian Mustard [Brassica juncea (L.) Czern.] and Its Phytoextraction of Lead from a Contaminated Soil Bull. Environmental Contamination and Toxicology. 61, 38-43.
  • Bennett, L. S., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., Pilon-Smits, E. A. H. 2013. Analysis of transgenic indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality. 32, 432-440.
  • Bennicelli, R., Stepniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J. 2014. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr (VI)) from municipal waste water. Chemosphere. 55,141-146).
  • Bolan, N. S., Adriano, D. C., Naidu, R. 2003. Role of phosphorus in inmobilization and bioavailability of heavy metals in the soilplant system. Reviews of Environmental Contamination and Toxicology. 177, 1-44.
  • Brooks R. 1994. Plants that hyperaccumulate heavy metals//Plants and the Chemical elements: biochemistry, uptake, tolerance and toxicity.
  • Carpena, R. O., Bernal, M. P. 2007. Claves de la fitorremediación: fitotecnologías para la recuperación de suelos. Ecosistemas. 16, 1-3.
  • Chaudhry, Q., Schröder, P., Werck-Reichhart, D., Grajek, W., Marecik, R. 2012. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research. 9, 4-17.
  • Cherian, S., Oliveira, M. 2015. Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental Science & Technology. 39, 9377-9390.
  • De la Fuente, J. M., Ramirez-Rodriguez, V., CabreraPonce, J. L., Herrera-Estrella, L. 2007. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science. 276, 1566-1568.
  • Dominguez-Solis, J. R., Gutierrez-Alcala, G., Vega, J. M., Romero, L. C., Gotor, C. 2001. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. Journal of Biological Chemistry. 276, 9297-9302.
  • Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Mellan, R., Strauss, S. H., Wilkerson J., Farin, F., Strand, S. E. 2007. Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees. Applied Biological Sciences. 104, 16816-16821.
  • Dushenkov, V., Kumar, P. B., Motto, H., Raskin, I. 2005. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology. 29,1239-1245.
  • Eapen, S., Suseelan, K., Tivarekar, S., Kotwal, S., Mitra, R. 2013. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research. 91, 127-133.
  • Eapen, S., Singh, S., D'Souza, S. F. 2017. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnology Advances. 25, 442-451.
  • Glass, D. J. 2009. U.S. and international markets for phytoremediation. Needham, MA: D. Glass Associates. 266 pp.
  • Ghosh, M., Singh, S. P. 2015. A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research. 3, 1- 18.
  • Groudeva, VI., Groudev, S. N., Doycheva, A. S. 2017. Bioremediation of waters contaminated with crude oil and toxic heavy metals. International Journal of Mineral Processing. 62, 293-299.
  • Hannink, N., Rosser, S. J., French, C. E., Basran, A., Murray, J. A. H., Nicklin, S., Bruce, N. C. 2011. Phytoremediation of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnology. 19, 1168-1172.
  • Hesegawa, I. E., Terada, M., Sunairi, H., Wakita, F., Shinmachi, A., Noguchi, M., Nakajima & J. 2007. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil. 196, 277-281.
  • Freeman, J. L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., Salt, D. E. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thalaspi nickel hyperaccumulators. Plant Cell. 16, 2176-2191.
  • Frérot, H., Lefébvre, C., Gruber, W., Collin, C., DosSantos, A., Escarré, J. 2006. Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil. 282, 53-65.
  • Fogarty, R. V., Dostalek, P., Patzak, M., Votruba, J., Tel-Or, E., Tobin, J. M. 2009. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Technology. 13, 530-538.
  • Lek, D. 2007. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). Journal of Hazardous Materials. 147, 74-77.
  • Lin Z. Q., de-Souza, M., Pickering, I. J., Terry, N. 2012. Evaluation of the macroalga, Chara canescens, for the remediation of seleniumcontaminated agricultural drainage by microcosms. Journal of Environmental Quality. 31, 2104-2110.
  • Limura, Y., Ikeda, S., Sonoki, T., Hayakawa, T., Kajita, S., Kimbara, K. 2005. Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Applied Microbiology and Biotechnology. 59, 246- 451.
  • Komives, T., Gullner, G. 2015. Phase I xenobiotic metabolic systems in plants. Z Naturforsch. 60, 179-185.
  • Kramer, U., Chardonnens, A. 2001. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55, 661-672.
  • Ma, X., Richter, A. R., Albers, S., Burken, J. G. 2004. Phytoremediation of MTBE with hybrid poplar trees. International Journal of Phytoremediation. 6, 157-167.
  • McGrath, S. P., Zhao, F. J., Lombi, E. 2011. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil. 232, 207-214.
  • Mkandawire, M., Taubert, B., Dude, E.G. 2005. Resource manipulation in uranium and arsenic attenuation by Lemna gibba L. (duckweed) in tailing water of a former uranium mine. Water, Air, & Soil Pollution. 166, 83-101.
  • Miretzky, P., Saralegui, A., Fernández-Cirelli, A. 2014. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57, 997-1005.
  • Quin, G., Terry, N. 2003. Selenium Removal by Constructed Wetlands: Quantitative Importance of Biological Volatilization in the Treatment of Selenium-Laden Agricultural Drainage Water. Environmental Science & Technology. 37, 606-615.
  • Raskin, I. 2006. Plant genetic engineering may help with environmental cleanup. Proceedings of the National Academy of Sciences, USA. 93, 3164-3166.
  • Reeves, R. D., Baker, A. J. M., Borhidi, A., Berazain, R. 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany. 83, 29-38.
  • Reeves, R. D. 2013. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil. 249, 57-65.
  • Reeves, R. D. 2024. The discovery and global distribution of hyperaccumulator plants^ a personal account// Environmental Science. 2024. Issue 1.
  • Reeves R.D., Kruckenderg A.R. 2017. Re-examination of the elemental composition of some Caryophyllaceae on North American ultramafic sols. Ecological reseache. 2017.
  • Sherri M.Sh., Kenso A., Hanze K., Ouvrard S., 2024. Stress response and phytoextraction potential of two Noccaea caerulescens populations in multicontaminated soil //Environmental science. Ecological researcher.
  • Suseela, M. R., Sinha, S., Singh, S., Saxena, R. 2012. Accumulation of chromium and scanning electron microscopic studies in Scirpus lacustris L. Treated with metal and tannery effluent. Bulletin of Environmental Contamination and Toxicology. 68, 540-548.
  • Watanabe, M. E. 2007. Phytoremediation on the brink of commercialization. Environmental Science & Technology. 31: 182-186
  • Wu, Q. T., Wei, Z. B., Ouyang, Y. 2007. Phytoextraction of Metal-Contaminated Soil by Sedum alfredii H: Effects of Chelator and Co-planting. Water, Air, & Soil Pollut. 180, 131-139.
  • Vain, P. 2006. Global trends in plant transgenic science and technology. Trends Biotechnol. 24, 206-211.
  • Vardanyan, L. G., Ingole, B. S. 2006. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International. 32, 208-218.
  • Vázquez, S., Agha, R., Granado, A., Sarro, M. J., Esteban, E., Peñalosa, J. M., Carpena, R. O. 2006. Use of White Lupin Plant for Phytostabilization of Cd and As Polluted Acid Soil. Water, Air, & Soil Pollution. 177, 349- 365.
  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., Stoffella, P. J. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil. 259, 181-189.
  • Zhao, M., Duncan, J. R. 2008. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochemistry. 33, 249- 255.
  • Zheng, J., Hintelmann, H., Dimock, B., Dzurko, M. S. 2013. Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS. Analytical and Bioanalytical Chemistry. 377, 14-24.
  • Zhuang, P., Yang, Q. W., Wang, H. B., Shu, W. S. 2007. Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Water, Air, & Soil Pollution. 184, 235-242.

Myosotis alpestris potential for extracting metal ions during wastewater pre-treatment at ore-mining facilities

Year 2024, Volume: 7 Issue: 2, 19 - 26, 31.12.2024
https://doi.org/10.46876/ja.1471583

Abstract

Phytoremediation and phytoextraction are seen as promising technologies which facilitate the development research on obtaining transgenic plants capable of metals hyperaccumulation. The article is devoted to the assessment of the possibilities of using Alpine forget-me-not for industrial wastewater treatment.The experiment was conducted on the industrial site of the Kovdorski GOK (Kovdor Ore-Mining Integrated Works), owned by the EuroChem Group. In 2020-2021 we assessed the content of heavy metals in plants on phyto-rafts made in the form of rectangular sheets of polyethylene foam with slots for plants. The rafts were fixed in running water at the beginning of the outlet channel, through which wastewater is discharged after primary purification. The most intensive accumulation in the organs of Alpine forget-me-nots appeared to be for physiological or essential metals, which is explained by their physiological role and the presence of membrane mechanisms for their intensive absorption. In terms of hyperaccumulation criteria, we can refer it in relation to iron, magnesium and manganese, especially when calculated for dry mass.

References

  • Bani, A., Echevarria, G., Sulçe, S., Morel, J. L., Mullai, A. 2009. In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramaWc site (Albania). Plant and Soil, 293, 79-89.
  • Baker A., Brooks R. 1989 Terrestrial higher plants which hyperaccululate metallic elements. A review of their distribution, ecology and phytochemistry//Environmental Science, Biology 1989
  • Begonia, G. B., Davis, C.D., Begonia, M. F. T., Gray, C. N. 2008. Growth Responses of Indian Mustard [Brassica juncea (L.) Czern.] and Its Phytoextraction of Lead from a Contaminated Soil Bull. Environmental Contamination and Toxicology. 61, 38-43.
  • Bennett, L. S., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., Pilon-Smits, E. A. H. 2013. Analysis of transgenic indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality. 32, 432-440.
  • Bennicelli, R., Stepniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J. 2014. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr (VI)) from municipal waste water. Chemosphere. 55,141-146).
  • Bolan, N. S., Adriano, D. C., Naidu, R. 2003. Role of phosphorus in inmobilization and bioavailability of heavy metals in the soilplant system. Reviews of Environmental Contamination and Toxicology. 177, 1-44.
  • Brooks R. 1994. Plants that hyperaccumulate heavy metals//Plants and the Chemical elements: biochemistry, uptake, tolerance and toxicity.
  • Carpena, R. O., Bernal, M. P. 2007. Claves de la fitorremediación: fitotecnologías para la recuperación de suelos. Ecosistemas. 16, 1-3.
  • Chaudhry, Q., Schröder, P., Werck-Reichhart, D., Grajek, W., Marecik, R. 2012. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research. 9, 4-17.
  • Cherian, S., Oliveira, M. 2015. Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental Science & Technology. 39, 9377-9390.
  • De la Fuente, J. M., Ramirez-Rodriguez, V., CabreraPonce, J. L., Herrera-Estrella, L. 2007. Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science. 276, 1566-1568.
  • Dominguez-Solis, J. R., Gutierrez-Alcala, G., Vega, J. M., Romero, L. C., Gotor, C. 2001. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. Journal of Biological Chemistry. 276, 9297-9302.
  • Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Mellan, R., Strauss, S. H., Wilkerson J., Farin, F., Strand, S. E. 2007. Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees. Applied Biological Sciences. 104, 16816-16821.
  • Dushenkov, V., Kumar, P. B., Motto, H., Raskin, I. 2005. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology. 29,1239-1245.
  • Eapen, S., Suseelan, K., Tivarekar, S., Kotwal, S., Mitra, R. 2013. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research. 91, 127-133.
  • Eapen, S., Singh, S., D'Souza, S. F. 2017. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnology Advances. 25, 442-451.
  • Glass, D. J. 2009. U.S. and international markets for phytoremediation. Needham, MA: D. Glass Associates. 266 pp.
  • Ghosh, M., Singh, S. P. 2015. A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research. 3, 1- 18.
  • Groudeva, VI., Groudev, S. N., Doycheva, A. S. 2017. Bioremediation of waters contaminated with crude oil and toxic heavy metals. International Journal of Mineral Processing. 62, 293-299.
  • Hannink, N., Rosser, S. J., French, C. E., Basran, A., Murray, J. A. H., Nicklin, S., Bruce, N. C. 2011. Phytoremediation of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnology. 19, 1168-1172.
  • Hesegawa, I. E., Terada, M., Sunairi, H., Wakita, F., Shinmachi, A., Noguchi, M., Nakajima & J. 2007. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil. 196, 277-281.
  • Freeman, J. L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., Salt, D. E. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thalaspi nickel hyperaccumulators. Plant Cell. 16, 2176-2191.
  • Frérot, H., Lefébvre, C., Gruber, W., Collin, C., DosSantos, A., Escarré, J. 2006. Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil. 282, 53-65.
  • Fogarty, R. V., Dostalek, P., Patzak, M., Votruba, J., Tel-Or, E., Tobin, J. M. 2009. Metal removal by immobilised and non-immobilised Azolla filiculoides. Biotechnology Technology. 13, 530-538.
  • Lek, D. 2007. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae). Journal of Hazardous Materials. 147, 74-77.
  • Lin Z. Q., de-Souza, M., Pickering, I. J., Terry, N. 2012. Evaluation of the macroalga, Chara canescens, for the remediation of seleniumcontaminated agricultural drainage by microcosms. Journal of Environmental Quality. 31, 2104-2110.
  • Limura, Y., Ikeda, S., Sonoki, T., Hayakawa, T., Kajita, S., Kimbara, K. 2005. Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Applied Microbiology and Biotechnology. 59, 246- 451.
  • Komives, T., Gullner, G. 2015. Phase I xenobiotic metabolic systems in plants. Z Naturforsch. 60, 179-185.
  • Kramer, U., Chardonnens, A. 2001. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55, 661-672.
  • Ma, X., Richter, A. R., Albers, S., Burken, J. G. 2004. Phytoremediation of MTBE with hybrid poplar trees. International Journal of Phytoremediation. 6, 157-167.
  • McGrath, S. P., Zhao, F. J., Lombi, E. 2011. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil. 232, 207-214.
  • Mkandawire, M., Taubert, B., Dude, E.G. 2005. Resource manipulation in uranium and arsenic attenuation by Lemna gibba L. (duckweed) in tailing water of a former uranium mine. Water, Air, & Soil Pollution. 166, 83-101.
  • Miretzky, P., Saralegui, A., Fernández-Cirelli, A. 2014. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere. 57, 997-1005.
  • Quin, G., Terry, N. 2003. Selenium Removal by Constructed Wetlands: Quantitative Importance of Biological Volatilization in the Treatment of Selenium-Laden Agricultural Drainage Water. Environmental Science & Technology. 37, 606-615.
  • Raskin, I. 2006. Plant genetic engineering may help with environmental cleanup. Proceedings of the National Academy of Sciences, USA. 93, 3164-3166.
  • Reeves, R. D., Baker, A. J. M., Borhidi, A., Berazain, R. 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany. 83, 29-38.
  • Reeves, R. D. 2013. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil. 249, 57-65.
  • Reeves, R. D. 2024. The discovery and global distribution of hyperaccumulator plants^ a personal account// Environmental Science. 2024. Issue 1.
  • Reeves R.D., Kruckenderg A.R. 2017. Re-examination of the elemental composition of some Caryophyllaceae on North American ultramafic sols. Ecological reseache. 2017.
  • Sherri M.Sh., Kenso A., Hanze K., Ouvrard S., 2024. Stress response and phytoextraction potential of two Noccaea caerulescens populations in multicontaminated soil //Environmental science. Ecological researcher.
  • Suseela, M. R., Sinha, S., Singh, S., Saxena, R. 2012. Accumulation of chromium and scanning electron microscopic studies in Scirpus lacustris L. Treated with metal and tannery effluent. Bulletin of Environmental Contamination and Toxicology. 68, 540-548.
  • Watanabe, M. E. 2007. Phytoremediation on the brink of commercialization. Environmental Science & Technology. 31: 182-186
  • Wu, Q. T., Wei, Z. B., Ouyang, Y. 2007. Phytoextraction of Metal-Contaminated Soil by Sedum alfredii H: Effects of Chelator and Co-planting. Water, Air, & Soil Pollut. 180, 131-139.
  • Vain, P. 2006. Global trends in plant transgenic science and technology. Trends Biotechnol. 24, 206-211.
  • Vardanyan, L. G., Ingole, B. S. 2006. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International. 32, 208-218.
  • Vázquez, S., Agha, R., Granado, A., Sarro, M. J., Esteban, E., Peñalosa, J. M., Carpena, R. O. 2006. Use of White Lupin Plant for Phytostabilization of Cd and As Polluted Acid Soil. Water, Air, & Soil Pollution. 177, 349- 365.
  • Yang, X. E., Long, X. X., Ye, H. B., He, Z. L., Calvert, D. V., Stoffella, P. J. 2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil. 259, 181-189.
  • Zhao, M., Duncan, J. R. 2008. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochemistry. 33, 249- 255.
  • Zheng, J., Hintelmann, H., Dimock, B., Dzurko, M. S. 2013. Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS. Analytical and Bioanalytical Chemistry. 377, 14-24.
  • Zhuang, P., Yang, Q. W., Wang, H. B., Shu, W. S. 2007. Phytoextraction of Heavy Metals by Eight Plant Species in the Field. Water, Air, & Soil Pollution. 184, 235-242.
There are 50 citations in total.

Details

Primary Language English
Subjects Land Capability and Soil Productivity
Journal Section Research Articles
Authors

Marija Menshakova 0000-0003-0441-668X

Valeria Surovets 0000-0002-4313-8945

Anastasia Nizikova 0000-0003-0345-6794

Nadezhda Romanova 0000-0001-7084-9673

Early Pub Date December 18, 2024
Publication Date December 31, 2024
Submission Date April 25, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Menshakova, M., Surovets, V., Nizikova, A., Romanova, N. (2024). Myosotis alpestris potential for extracting metal ions during wastewater pre-treatment at ore-mining facilities. Journal of Agriculture, 7(2), 19-26. https://doi.org/10.46876/ja.1471583