Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Secondary Metabolite Contents of Some Plants by HPLC

Yıl 2024, Cilt: 7 Sayı: 2, 269 - 279, 31.12.2024
https://doi.org/10.46876/ja.1597464

Öz

Identification and quantification of secondary metabolite compound profiles of plants is an important tool for food quality and authenticity assessment. In this context, the aim of this study was to determine secondary metabolite compounds of four plants. Rhus coriaria L. (Anacardiaceae)., Tilia tomentosa Moench., Rheum ribes L., and Rubus caesius L. secondary metabolite compounds were analyzed by HPLC. Twenty different compounds were used as standards for the analysis performed by HPLC. The most abundant compounds among the determined compounds were determined as hydroxybenzoic acid, Gallik acid, ascorbic acid and alizarin.

Kaynakça

  • Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L.(Sumac) fruits. Food Chemistry, 166, 179-191.
  • Amiri, N., Shafaghat, A., & Salimi, F. (2015). Screening of the Essential Oil, Hexane Extract, Chemical Composition, Antioxidant Activity, andAntimicrobial Acitivity of the Flower Rheum ribes L. from Iran. Journal of Essential Oil Bearing Plants, 18(5), 1108-1115.
  • Arena, K., Trovato, E., Cacciola, F., Spagnuolo, L., Pannucci, E., Guarnaccia, P., Santi, L., Dugo, P., Mondello, L., & Dugo, L. (2022). Phytochemical characterization of Rhus coriaria L. extracts by headspace solid-phase micro extraction gas chromatography, comprehensive two-dimensional liquid chromatography, and antioxidant activity evaluation. Molecules, 27(5), 1727.
  • Brooks, E. L., Mutengwa, V. S., Abdalla, A., Yeoman, M. S., & Patel, B. A. (2019). Determination of tryptophan metabolism from biological tissues and fluids using high performance liquid chromatography with simultaneous dual electrochemical detection. Analyst, 144(20), 6011-6018.
  • Das, M., Prakash, H. S., & Nalini, M. S. (2018). Bioactive sesquiterpene, plasticizer, and phenols from the fungal endophytes of Polygonum chinense L. Annals of Microbiology, 68, 595-609.
  • Elagbar, Z. A., Shakya, A. K., Barhoumi, L. M., & Al‐Jaber, H. I. (2020). Phytochemical diversity and pharmacological properties of Rhus coriaria. Chemistry & Biodiversity, 17(4), e1900561.
  • Freile‐Pelegrín, Y., & Robledo, D. (2013). Bioactive phenolic compounds from algae. Bioactive compounds from marine foods: plant and animal sources, 113-129.
  • Gawel, R. (1998). Red wine astringency: a review. Australian Journal of Grape and Wine Research, 4(2), 74-95.
  • Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20(7), 618-626.
  • Hayes, P. E., Luong, J. H., Gilchrist, E. S., Buzid, A., & Glennon, J. D. (2020). Profiling of phenolic flavorings using core-shell reversed-phase liquid chromatography with electrochemical detection at a boron-doped diamond electrode. Journal of Chromatography A, 1612, 460649.
  • Hossen, M. J., Baek, K.-S., Kim, E., Yang, W. S., Jeong, D., Kim, J. H., Kweon, D.-H., Yoon, D. H., Kim, T. W., & Kim, J.-H. (2015). In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. Journal of Ethnopharmacology, 159, 9-16.
  • Hostettmann, K., & Wolfender, J. L. (1997). The search for biologically active secondary metabolites. Pesticide Science, 51(4), 471-482.
  • Karadağ, M., Koyuncu, M., Atalar, M. N., & Aras, A. (2021). SPME/GC-MS analysis of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale volatiles. Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg, 14, 41-49.
  • Kıvrak, Ş., Göktürk, T., & Kıvrak, İ. (2017). Determination of phenolic composition of Tilia Tomentosa flowers using UPLC-ESI-MS/MS. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 249-256.
  • Kumar, B. A., Rao, V., Bindu, K. H., Rohini, M., & Shivakumar. (2021). Development, validation and application of RP-HPLC method for quantitative estimation of wedelolactone in different accessions and plant parts of Eclipta alba (L.). Journal of Plant Biochemistry and Biotechnology, 1-15.
  • Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C., & Ramos, F. (2023). Halophytes as source of bioactive phenolic compounds and their potential applications. Critical Reviews in Food Science and Nutrition, 63(8), 1078-1101.
  • Mısır, S., Özbek, M., & Hepokur, C. (2023). Bioactive Composition, Antioxidant, And Cytotoxic Activities of Rheum Ribes Extracts: Rheum ribes ekstraktlarının çeşitli biyolojik aktiviteleri. Turkish Journal of Agriculture-Food Science and Technology, 11(8), 1345-1350.
  • Mizzi, L., Chatzitzika, C., Gatt, R., & Valdramidis, V. (2020). HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technology and Biotechnology, 58(1), 12-19.
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American journal of Enology and Viticulture, 53(4), 261-267.
  • Öztürk, M., & Özçelik, H. (1991). Doğu Anadolu'nun faydalı bitkiler. Siirt İlim, spor, kültür ve Arastırma Vakfı.
  • Peev, C., Dehelean, C., Antal, D., Feflea, S., Olariu, L., & Toma, C. (2009). Tilia tomentosa foliar bud extract: phytochemical analysis and dermatological testing. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 19(1).
  • Plumb, G., Price, K., & Williamson, G. (1999). Antioxidant properties of flavonol glycosides from tea. Redox Report, 4(1-2), 13-16.
  • Raafat, K., Aboul-Ela, M., & El-Lakany, A. (2021). Alloxan-induced diabetic thermal hyperalgesia, prophylaxis and phytotherapeutic effects of Rheum ribes L. in mouse model. Archives of Pharmacal Research, 44, 1-10.
  • Schwarz, M., Picazo-Bacete, J. J., Winterhalter, P., & Hermosín-Gutiérrez, I. (2005). Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. Journal of Agricultural and Food Chemistry, 53(21), 8372-8381.
  • Sparzak, B., Merino-Arevalo, M., Vander Heyden, Y., Krauze-Baranowska, M., Majdan, M., Fecka, I., Głód, D., & Bączek, T. (2010). HPLC analysis of polyphenols in the fruits of Rubus idaeus L.(Rosaceae). Natural Product Research, 24(19), 1811-1822.
  • Tabin, S., Gupta, R., Bansal, G., & Kamili, A. N. (2016). Comparative HPLC analysis of emodin, aloe emodin and rhein in Rheum emodi of wild and in vitro raised plants. Journal of Pharmacognosy and Phytochemistry, 5(2), 121-130.
  • Toker, G., MEMİŞOĞLU, M., YEŞİLADA, E., & Aslan, M. (2004). Main flavonoids of Tilia argentea DESF. ex DC. leaves. Turkish Journal of Chemistry, 28(6), 745-750.
  • Tran, T. T., Kim, M., Jang, Y., Lee, H. W., Nguyen, H. T., Nguyen, T. N., Park, H. W., Le Dang, Q., & Kim, J.-C. (2017). Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC complementary and alternative medicine, 17, 1-11.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic Chemistry, 94, 103333.
  • Yang, X., Li, Y., Shao, Q., Li, Z., Chun, Z., Wang, Y., Zhou, Y., & Chen, R. (2024). Screening, fingerprinting, and identification of phenolic antioxidants in Persicaria chinensis (L.) H. Gross by liquid chromatography–electrochemical detection and liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 124387.
  • Yolbaş, İ. (2024). Phenolic Compound Content and Antioxidant Activity of Rheum ribes Shells. Journal of Chemistry, 2024(1), 9151180.

Bazı Bitkilerin Sekonder Metabolit İçeriklerinin HPLC ile Analizi

Yıl 2024, Cilt: 7 Sayı: 2, 269 - 279, 31.12.2024
https://doi.org/10.46876/ja.1597464

Öz

Bitkilerin sekonder metabolit bileşik profilinin tanımlanması ve miktarlarının belirlenmesi, gıda kalitesi ve özgünlük değerlendirmesi için önemli bir araçtır. Bu bağlamda, bu çalışmada, dört bitkinin seconder metabolit bileşiklerinin belirlemesi amaçlanmıştır. Rhus coriaria L. (Anacardiaceae), Tilia tomentosa Moench., Rheum ribes L., Rubus caesius L. sekonder metabolit bileşikleri HPLC ile analiz edildi. HPLC ile yapılan analiz için yirmi farklı bileşik standat olarak kullanıldı. Belirlenen bileşiklerden en yoğun bulunan bileşikler Hidroksibenzoik asit, gallik asit, Askorbikaskorbik asit ve alizarin olarak tespit edildi.

Destekleyen Kurum

None

Kaynakça

  • Abu-Reidah, I. M., Ali-Shtayeh, M. S., Jamous, R. M., Arráez-Román, D., & Segura-Carretero, A. (2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L.(Sumac) fruits. Food Chemistry, 166, 179-191.
  • Amiri, N., Shafaghat, A., & Salimi, F. (2015). Screening of the Essential Oil, Hexane Extract, Chemical Composition, Antioxidant Activity, andAntimicrobial Acitivity of the Flower Rheum ribes L. from Iran. Journal of Essential Oil Bearing Plants, 18(5), 1108-1115.
  • Arena, K., Trovato, E., Cacciola, F., Spagnuolo, L., Pannucci, E., Guarnaccia, P., Santi, L., Dugo, P., Mondello, L., & Dugo, L. (2022). Phytochemical characterization of Rhus coriaria L. extracts by headspace solid-phase micro extraction gas chromatography, comprehensive two-dimensional liquid chromatography, and antioxidant activity evaluation. Molecules, 27(5), 1727.
  • Brooks, E. L., Mutengwa, V. S., Abdalla, A., Yeoman, M. S., & Patel, B. A. (2019). Determination of tryptophan metabolism from biological tissues and fluids using high performance liquid chromatography with simultaneous dual electrochemical detection. Analyst, 144(20), 6011-6018.
  • Das, M., Prakash, H. S., & Nalini, M. S. (2018). Bioactive sesquiterpene, plasticizer, and phenols from the fungal endophytes of Polygonum chinense L. Annals of Microbiology, 68, 595-609.
  • Elagbar, Z. A., Shakya, A. K., Barhoumi, L. M., & Al‐Jaber, H. I. (2020). Phytochemical diversity and pharmacological properties of Rhus coriaria. Chemistry & Biodiversity, 17(4), e1900561.
  • Freile‐Pelegrín, Y., & Robledo, D. (2013). Bioactive phenolic compounds from algae. Bioactive compounds from marine foods: plant and animal sources, 113-129.
  • Gawel, R. (1998). Red wine astringency: a review. Australian Journal of Grape and Wine Research, 4(2), 74-95.
  • Gómez-Alonso, S., García-Romero, E., & Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20(7), 618-626.
  • Hayes, P. E., Luong, J. H., Gilchrist, E. S., Buzid, A., & Glennon, J. D. (2020). Profiling of phenolic flavorings using core-shell reversed-phase liquid chromatography with electrochemical detection at a boron-doped diamond electrode. Journal of Chromatography A, 1612, 460649.
  • Hossen, M. J., Baek, K.-S., Kim, E., Yang, W. S., Jeong, D., Kim, J. H., Kweon, D.-H., Yoon, D. H., Kim, T. W., & Kim, J.-H. (2015). In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. Journal of Ethnopharmacology, 159, 9-16.
  • Hostettmann, K., & Wolfender, J. L. (1997). The search for biologically active secondary metabolites. Pesticide Science, 51(4), 471-482.
  • Karadağ, M., Koyuncu, M., Atalar, M. N., & Aras, A. (2021). SPME/GC-MS analysis of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Zingiber officinale volatiles. Erzincan Üniversitesi Fen Bilim. Enstitüsü Derg, 14, 41-49.
  • Kıvrak, Ş., Göktürk, T., & Kıvrak, İ. (2017). Determination of phenolic composition of Tilia Tomentosa flowers using UPLC-ESI-MS/MS. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 249-256.
  • Kumar, B. A., Rao, V., Bindu, K. H., Rohini, M., & Shivakumar. (2021). Development, validation and application of RP-HPLC method for quantitative estimation of wedelolactone in different accessions and plant parts of Eclipta alba (L.). Journal of Plant Biochemistry and Biotechnology, 1-15.
  • Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C., & Ramos, F. (2023). Halophytes as source of bioactive phenolic compounds and their potential applications. Critical Reviews in Food Science and Nutrition, 63(8), 1078-1101.
  • Mısır, S., Özbek, M., & Hepokur, C. (2023). Bioactive Composition, Antioxidant, And Cytotoxic Activities of Rheum Ribes Extracts: Rheum ribes ekstraktlarının çeşitli biyolojik aktiviteleri. Turkish Journal of Agriculture-Food Science and Technology, 11(8), 1345-1350.
  • Mizzi, L., Chatzitzika, C., Gatt, R., & Valdramidis, V. (2020). HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technology and Biotechnology, 58(1), 12-19.
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American journal of Enology and Viticulture, 53(4), 261-267.
  • Öztürk, M., & Özçelik, H. (1991). Doğu Anadolu'nun faydalı bitkiler. Siirt İlim, spor, kültür ve Arastırma Vakfı.
  • Peev, C., Dehelean, C., Antal, D., Feflea, S., Olariu, L., & Toma, C. (2009). Tilia tomentosa foliar bud extract: phytochemical analysis and dermatological testing. Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Series), 19(1).
  • Plumb, G., Price, K., & Williamson, G. (1999). Antioxidant properties of flavonol glycosides from tea. Redox Report, 4(1-2), 13-16.
  • Raafat, K., Aboul-Ela, M., & El-Lakany, A. (2021). Alloxan-induced diabetic thermal hyperalgesia, prophylaxis and phytotherapeutic effects of Rheum ribes L. in mouse model. Archives of Pharmacal Research, 44, 1-10.
  • Schwarz, M., Picazo-Bacete, J. J., Winterhalter, P., & Hermosín-Gutiérrez, I. (2005). Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. Journal of Agricultural and Food Chemistry, 53(21), 8372-8381.
  • Sparzak, B., Merino-Arevalo, M., Vander Heyden, Y., Krauze-Baranowska, M., Majdan, M., Fecka, I., Głód, D., & Bączek, T. (2010). HPLC analysis of polyphenols in the fruits of Rubus idaeus L.(Rosaceae). Natural Product Research, 24(19), 1811-1822.
  • Tabin, S., Gupta, R., Bansal, G., & Kamili, A. N. (2016). Comparative HPLC analysis of emodin, aloe emodin and rhein in Rheum emodi of wild and in vitro raised plants. Journal of Pharmacognosy and Phytochemistry, 5(2), 121-130.
  • Toker, G., MEMİŞOĞLU, M., YEŞİLADA, E., & Aslan, M. (2004). Main flavonoids of Tilia argentea DESF. ex DC. leaves. Turkish Journal of Chemistry, 28(6), 745-750.
  • Tran, T. T., Kim, M., Jang, Y., Lee, H. W., Nguyen, H. T., Nguyen, T. N., Park, H. W., Le Dang, Q., & Kim, J.-C. (2017). Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC complementary and alternative medicine, 17, 1-11.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic Chemistry, 94, 103333.
  • Yang, X., Li, Y., Shao, Q., Li, Z., Chun, Z., Wang, Y., Zhou, Y., & Chen, R. (2024). Screening, fingerprinting, and identification of phenolic antioxidants in Persicaria chinensis (L.) H. Gross by liquid chromatography–electrochemical detection and liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 124387.
  • Yolbaş, İ. (2024). Phenolic Compound Content and Antioxidant Activity of Rheum ribes Shells. Journal of Chemistry, 2024(1), 9151180.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyosistem
Bölüm Araştırma Makaleleri
Yazarlar

Abdülmelik Aras 0000-0001-7711-3298

Musa Karadağ 0000-0003-2498-3403

Erken Görünüm Tarihi 29 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 9 Aralık 2024
Kabul Tarihi 22 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Aras, A., & Karadağ, M. (2024). Bazı Bitkilerin Sekonder Metabolit İçeriklerinin HPLC ile Analizi. Journal of Agriculture, 7(2), 269-279. https://doi.org/10.46876/ja.1597464