Derleme
BibTex RIS Kaynak Göster

Effect of Biochar and Electrostatic Coating on Seed Performance

Yıl 2024, Cilt: 7 Sayı: 2, 302 - 309, 31.12.2024
https://doi.org/10.46876/ja.1600751

Öz

Biochar coating technology offers innovative ways to improve seed performance and contribute to sustainable agriculture. Biochar is a carbon-rich material derived from the pyrolysis of organic biomass under low oxygen conditions and is characterized by water retention capacity, nutrient delivery and soil regulation. These properties offer significant advantages to minimize environmental impacts while increasing agricultural productivity. Seed coating technology coats seeds with protective or functional layers to improve germination, seedling development and resilience to stress conditions. Electrostatic coating prevents material waste and increases efficiency by uniformly adhering coating particles to the seed surface with electrical charges. This allows the biochar to create a microenvironment around the seed, thus providing benefits such as moisture retention and aeration. The controlled release of nutrients provided by the coating promotes plant growth and increases resilience to abiotic stresses. Biochar-coated seeds have a wide range of applications, from low-quality soils to hydroponic systems. In hydroponic systems, biochar promotes plant root development by providing a favorable environment for microorganisms, while increasing the germination rate of seeds in harsh conditions such as salinity and drought. Furthermore, biochar coatings reduce environmental pollution and improve soil health through pesticides and heavy metals adsorption. In the electrostatic coating method, optimizing factors such as biochar particle size, binder selection and coating thickness are critical to improve seed performance. In the future, this process can be further enhanced by integrating artificial intelligence and nanotechnology. Biochar-coated seeds have significant potential, especially in the fight against desertification and land degradation, and have emerged as a key component in environmentally friendly agricultural practices. In conclusion, biochar coating technology offers a sustainable and innovative solution that contributes to global food security and environmental protection goals while addressing agricultural challenges such as water scarcity, chemical use and environmental degradation.

Etik Beyan

no ethics statement is required for the study

Kaynakça

  • Adelabu, D. B., & Franke, A. (2022). The beneficial effects of insect pollination and biochar seed coating on okra (Abelmoschus esculentus) seed quality at varying temperature conditions. Agriculture, 12(10), 1690. https://doi.org/10.3390/agriculture12101690
  • Aller, M. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46(6), 1–25. https://doi.org/10.1080/10643389.2016.1212368
  • Andriessen, R., Snetselaar, J., Suer, R., Osinga, A., Deschietere, J., Lyimo, I. N., et al. (2015). Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proceedings of the National Academy of Sciences, 112(39), 12081–12086. https://doi.org/10.1073/pnas.1510801112
  • Bolan, N., Hoang, S. A., Beiyuan, J., et al. (2021). Multifunctional applications of biochar beyond carbon storage. International Journal of Research. https://doi.org/10.1080/09506608.2021.1922047
  • Campobenedetto, C., Mannino, G., Agliassa, C., et al. (2020). Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean. Plants, 9(10), 1308. https://doi.org/10.3390/plants9101308
  • Daful, A. G., Chandraratne, M., & Loridon, M. (2021). Recent perspectives in biochar production, characterization and applications. IntechOpen Book Chapter. https://doi.org/10.5772/intechopen.99788
  • Enaime, G., Baçaoui, A., Yaacoubi, A., & Lüübken, M. (2020). Biochar for wastewater treatment—Conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492
  • Evizal, R., & Prasmatiwi, F. (2023). Biochar: Pemanfaatan dan aplikasi praktis. Jurnal Agroteknologi, 22(1), 1–12. https://doi.org/10.23960/ja.v22i1.7151
  • Glodowska, M., Schwinghamer, T., Husk, B. R., & Smith, D. L. (2017). Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8(9), 710–722. https://doi.org/10.4236/AS.2017.89076
  • Hussain, A., Al-Taey, D., & Kadhum, H. (2023). Biochar application increases the amount of nitrogen, phosphorus and potassium in the soil: A review. IOP Conference Series: Earth and Environmental Science, 1213(1), 012023. https://doi.org/10.1088/1755-1315/1213/1/012023
  • Igalavithana, A., Mandal, S., Niazi, N., et al. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 48(1), 1–23. https://doi.org/10.1080/10643389.2017.1421844
  • Imran, S., Sarker, P., Hoque, M. N., et al. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop & Pasture Science, 73(2), 118–130. https://doi.org/10.1071/CP21486
  • Karpunina, L. V., Kalmykov, N. V., Bychkova, V., et al. (2022). Effect of exopolysaccharide Streptococcus thermophilus on stress resistance of sorghum. AgroJournal, 5, 27–30. https://doi.org/10.28983/asj.y2022i5pp27-30
  • Lira-Saldívar, R. H., Argüello, B. M., Villarreal, G. D. S., & Reyes, I. V. (2018). Potencial de la nanotecnología en la agricultura. Agro Productividad, 11(2), 57–64. https://doi.org/10.15174/AU.2018.1575
  • Maienza, A., Baronti, S., Pusceddu, E., et al. (2015). The biochar - a solution to enhance processing tomato production. Acta Horticulturae, 1081, 231–236. https://doi.org/10.17660/ActaHortic.2015.1081.26
  • Nazir, R., & Batool, M. (2020). Synthesis of biochar-based composites to evaluate morphology of wheat seedling. LGU Journal of Life Sciences, 4(4), 67–78. https://doi.org/10.54692/lgujls.2020.0404123
  • Olszyk, D., Shiroyama, T., Novak, J., & Johnson, M. G. (2018). A rapid-test for screening biochar effects on seed germination. Communications in Soil Science and Plant Analysis, 49(10), 1193–1203. https://doi.org/10.1080/00103624.2018.1495726
  • Pereira, A. E. S., Oliveira, H. C., Fraceto, L. F., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390/nano11020267
  • Rahman, M. M., & Dutta, H. (2022). Microbial seed coating: An emerging strategy towards organic vegetable production. Agricultural Research, 11(2), 231–242. https://doi.org/10.18805/ag.r-2272
  • Rodrigues, L. A., Oliveira, I. C., Nogueira, G. A., Silva, T. R. D., Cândido, A., & Alves, C. Z. (2019). Coating seeds with silicon enhances the corn yield of the second crop. Revista Ciência Agronômica, 32(4), 897–905. https://doi.org/10.1590/1983-21252019v32n405rc
  • Safdar, H., Jamil, M., Hussain, A., et al. (2022). The effect of different carrier materials on the growth and yield of spinach under pot and field experimental conditions. Sustainability, 14(19), 12255. https://doi.org/10.3390/su141912255
  • Sharma, O. P., Singh, D., Kushwah, N., & Chauhan, A. P. S. (2023). Nano biochar for sustainable agriculture and environmental remediation: A comprehensive review. International Journal of Environment and Climate Change, 13(11), 3366. https://doi.org/10.9734/ijecc/2023/v13i113366
  • Zhang, K., Khan, Z., Yu, Q., Qu, Z., Liu, J., Luo, T., Zhu, K., Bi, J., Hu, L., & Luo, L. (2022). Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants, 11(21), 2864. https://doi.org/10.3390/plants11212864
  • Zvinavashe, A. T., Lim, E. J., Sun, H., & Marelli, B. (2019). A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proceedings of the National Academy of Sciences, 116(51), 25555–25562. https://doi.org/10.1073/pnas.1915902116

Biyokömür ve Elektrostatik Kaplama Yönteminin Tohum Performansına Etkisi

Yıl 2024, Cilt: 7 Sayı: 2, 302 - 309, 31.12.2024
https://doi.org/10.46876/ja.1600751

Öz

Biyokömür kaplama teknolojisi, tohum performansını artırmak ve sürdürülebilir tarıma katkı sağlamak amacıyla inovatif yöntemler sunmaktadır. Biyokömür, organik biyokütlenin düşük oksijen koşullarında pirolizi sonucu elde edilen karbon zengin bir malzeme olup, su tutma kapasitesi, besin iletimi ve toprak düzenleme özellikleri ile dikkat çeker. Bu özellikler, tarımda verimliliği artırırken çevresel etkileri minimize etmek için önemli avantajlar sunar. Tohum kaplama teknolojisi, tohumları koruyucu veya işlevsel katmanlarla kaplayarak çimlenme, fide gelişimi ve stres koşullarına dayanıklılığı artırır. Elektrostatik kaplama, kaplama partiküllerini elektrik yükleri ile tohum yüzeyine homojen bir şekilde yapıştırarak malzeme israfını önler ve etkinliği artırır. Bu yöntemle, biyokömürün tohum etrafında bir mikro ortam oluşturması sağlanır, böylece nem tutma ve havalandırma gibi faydalar elde edilir. Kaplamanın sağladığı besinlerin kontrollü salınımı, bitki gelişimini destekler ve abiyotik streslere karşı dayanıklılığı artırır. Biyokömür kaplı tohumlar, düşük kaliteli topraklardan hidroponik sistemlere kadar geniş bir uygulama alanına sahiptir. Hidroponik sistemlerde biyokömür, mikroorganizmalar için uygun bir ortam sağlayarak bitki kök gelişimini teşvik ederken, tuzluluk ve kuraklık gibi zorlu koşullarda tohumların çimlenme oranını artırır. Ayrıca, biyokömür kaplamalar, pestisit ve ağır metallerin adsorpsiyonu sayesinde çevresel kirliliği azaltır ve toprak sağlığını iyileştirir. Elektrostatik kaplama yönteminde, biyokömür partikül boyutu, bağlayıcı seçimi ve kaplama kalınlığı gibi faktörlerin optimize edilmesi, tohum performansını artırmada kritik öneme sahiptir. Gelecekte bu süreç, yapay zeka ve nanoteknolojinin entegrasyonu ile daha da geliştirilebilir. Biyokömür kaplı tohumlar, özellikle çölleşme ve arazi bozulması ile mücadelede önemli bir potansiyel taşımakta ve çevre dostu tarım uygulamalarında temel bir bileşen olarak öne çıkmaktadır. Sonuç olarak, biyokömür kaplama teknolojisi, su kıtlığı, kimyasal kullanım ve çevresel bozulma gibi tarımsal zorlukları ele alırken, küresel gıda güvenliği ve çevre koruma hedeflerine katkıda bulunan sürdürülebilir ve yenilikçi bir çözüm sunmaktadır.

Kaynakça

  • Adelabu, D. B., & Franke, A. (2022). The beneficial effects of insect pollination and biochar seed coating on okra (Abelmoschus esculentus) seed quality at varying temperature conditions. Agriculture, 12(10), 1690. https://doi.org/10.3390/agriculture12101690
  • Aller, M. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46(6), 1–25. https://doi.org/10.1080/10643389.2016.1212368
  • Andriessen, R., Snetselaar, J., Suer, R., Osinga, A., Deschietere, J., Lyimo, I. N., et al. (2015). Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proceedings of the National Academy of Sciences, 112(39), 12081–12086. https://doi.org/10.1073/pnas.1510801112
  • Bolan, N., Hoang, S. A., Beiyuan, J., et al. (2021). Multifunctional applications of biochar beyond carbon storage. International Journal of Research. https://doi.org/10.1080/09506608.2021.1922047
  • Campobenedetto, C., Mannino, G., Agliassa, C., et al. (2020). Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean. Plants, 9(10), 1308. https://doi.org/10.3390/plants9101308
  • Daful, A. G., Chandraratne, M., & Loridon, M. (2021). Recent perspectives in biochar production, characterization and applications. IntechOpen Book Chapter. https://doi.org/10.5772/intechopen.99788
  • Enaime, G., Baçaoui, A., Yaacoubi, A., & Lüübken, M. (2020). Biochar for wastewater treatment—Conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492
  • Evizal, R., & Prasmatiwi, F. (2023). Biochar: Pemanfaatan dan aplikasi praktis. Jurnal Agroteknologi, 22(1), 1–12. https://doi.org/10.23960/ja.v22i1.7151
  • Glodowska, M., Schwinghamer, T., Husk, B. R., & Smith, D. L. (2017). Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8(9), 710–722. https://doi.org/10.4236/AS.2017.89076
  • Hussain, A., Al-Taey, D., & Kadhum, H. (2023). Biochar application increases the amount of nitrogen, phosphorus and potassium in the soil: A review. IOP Conference Series: Earth and Environmental Science, 1213(1), 012023. https://doi.org/10.1088/1755-1315/1213/1/012023
  • Igalavithana, A., Mandal, S., Niazi, N., et al. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 48(1), 1–23. https://doi.org/10.1080/10643389.2017.1421844
  • Imran, S., Sarker, P., Hoque, M. N., et al. (2022). Biochar actions for the mitigation of plant abiotic stress. Crop & Pasture Science, 73(2), 118–130. https://doi.org/10.1071/CP21486
  • Karpunina, L. V., Kalmykov, N. V., Bychkova, V., et al. (2022). Effect of exopolysaccharide Streptococcus thermophilus on stress resistance of sorghum. AgroJournal, 5, 27–30. https://doi.org/10.28983/asj.y2022i5pp27-30
  • Lira-Saldívar, R. H., Argüello, B. M., Villarreal, G. D. S., & Reyes, I. V. (2018). Potencial de la nanotecnología en la agricultura. Agro Productividad, 11(2), 57–64. https://doi.org/10.15174/AU.2018.1575
  • Maienza, A., Baronti, S., Pusceddu, E., et al. (2015). The biochar - a solution to enhance processing tomato production. Acta Horticulturae, 1081, 231–236. https://doi.org/10.17660/ActaHortic.2015.1081.26
  • Nazir, R., & Batool, M. (2020). Synthesis of biochar-based composites to evaluate morphology of wheat seedling. LGU Journal of Life Sciences, 4(4), 67–78. https://doi.org/10.54692/lgujls.2020.0404123
  • Olszyk, D., Shiroyama, T., Novak, J., & Johnson, M. G. (2018). A rapid-test for screening biochar effects on seed germination. Communications in Soil Science and Plant Analysis, 49(10), 1193–1203. https://doi.org/10.1080/00103624.2018.1495726
  • Pereira, A. E. S., Oliveira, H. C., Fraceto, L. F., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390/nano11020267
  • Rahman, M. M., & Dutta, H. (2022). Microbial seed coating: An emerging strategy towards organic vegetable production. Agricultural Research, 11(2), 231–242. https://doi.org/10.18805/ag.r-2272
  • Rodrigues, L. A., Oliveira, I. C., Nogueira, G. A., Silva, T. R. D., Cândido, A., & Alves, C. Z. (2019). Coating seeds with silicon enhances the corn yield of the second crop. Revista Ciência Agronômica, 32(4), 897–905. https://doi.org/10.1590/1983-21252019v32n405rc
  • Safdar, H., Jamil, M., Hussain, A., et al. (2022). The effect of different carrier materials on the growth and yield of spinach under pot and field experimental conditions. Sustainability, 14(19), 12255. https://doi.org/10.3390/su141912255
  • Sharma, O. P., Singh, D., Kushwah, N., & Chauhan, A. P. S. (2023). Nano biochar for sustainable agriculture and environmental remediation: A comprehensive review. International Journal of Environment and Climate Change, 13(11), 3366. https://doi.org/10.9734/ijecc/2023/v13i113366
  • Zhang, K., Khan, Z., Yu, Q., Qu, Z., Liu, J., Luo, T., Zhu, K., Bi, J., Hu, L., & Luo, L. (2022). Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants, 11(21), 2864. https://doi.org/10.3390/plants11212864
  • Zvinavashe, A. T., Lim, E. J., Sun, H., & Marelli, B. (2019). A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proceedings of the National Academy of Sciences, 116(51), 25555–25562. https://doi.org/10.1073/pnas.1915902116
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyosistem
Bölüm Derleme Makaleleri
Yazarlar

Sefa Altıkat 0000-0002-3472-4424

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 29 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Altıkat, S. (2024). Biyokömür ve Elektrostatik Kaplama Yönteminin Tohum Performansına Etkisi. Journal of Agriculture, 7(2), 302-309. https://doi.org/10.46876/ja.1600751