BibTex RIS Kaynak Göster

Regular handicap tournaments of high degree

Yıl 2016, Cilt: 3 Sayı: 3, 159 - 164, 09.08.2016
https://doi.org/10.13069/jacodesmath.22530

Öz

A  handicap distance antimagic labeling of a graph $G=(V,E)$ with $n$ vertices is a bijection ${f}: V\to \{ 1,2,\ldots ,n\} $ with the property that ${f}(x_i)=i$ and the sequence of the weights $w(x_1),w(x_2),\ldots,w(x_n)$
(where $w(x_i)=\sum\limits_{x_j\in N(x_i)}f(x_j)$)
forms an increasing arithmetic progression with difference one. A graph $G$ is a {\em handicap distance antimagic graph} if it allows a handicap distance antimagic labeling.
We construct $(n-7)$-regular handicap distance antimagic graphs for every order $n\equiv2\pmod4$ with a few small exceptions. This result complements results by Kov\'a\v{r}, Kov\'a\v{r}ov\'a, and Krajc~[P. Kov\'a\v{r}, T. Kov\'a\v{r}ov\'a, B. Krajc, On handicap labeling of regular graphs, manuscript, personal communication, 2016] who found such graphs with regularities smaller than $n-7$.

Kaynakça

  • S. Arumugam, D. Froncek, N. Kamatchi, Distance magic graphs – a survey, J. Indones. Math. Soc. Special Edition (2011) 1–9.
  • G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, Fourth edition, 2005.
  • D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, Congr. Numer. 187 (2007) 83–89.
  • D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Comb. 10(2) (2013) 119–127.
  • D. Froncek, Handicap incomplete tournaments and ordered distance antimagic graphs, Congr. Numer. 217 (2013) 93–99.
  • D. Froncek, P. Kovár, T. Kovárová, Fair incomplete tournaments, Bull. Inst. Combin. Appl. 48 (2006) 31–33.
  • J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (# DS6) (2015) 43 pp.
  • T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286–313.
  • T. Harmuth, Ueber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413–447.
  • M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.
  • K. A. Sugeng, D. Froncek, M. Miller, J. Ryan, J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 39–48.
  • V. Vilfred, $sum$-labelled graph and circulant graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.

Yıl 2016, Cilt: 3 Sayı: 3, 159 - 164, 09.08.2016
https://doi.org/10.13069/jacodesmath.22530

Öz

Kaynakça

  • S. Arumugam, D. Froncek, N. Kamatchi, Distance magic graphs – a survey, J. Indones. Math. Soc. Special Edition (2011) 1–9.
  • G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, Fourth edition, 2005.
  • D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, Congr. Numer. 187 (2007) 83–89.
  • D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Comb. 10(2) (2013) 119–127.
  • D. Froncek, Handicap incomplete tournaments and ordered distance antimagic graphs, Congr. Numer. 217 (2013) 93–99.
  • D. Froncek, P. Kovár, T. Kovárová, Fair incomplete tournaments, Bull. Inst. Combin. Appl. 48 (2006) 31–33.
  • J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (# DS6) (2015) 43 pp.
  • T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286–313.
  • T. Harmuth, Ueber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413–447.
  • M. Miller, C. Rodger, R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.
  • K. A. Sugeng, D. Froncek, M. Miller, J. Ryan, J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009) 39–48.
  • V. Vilfred, $sum$-labelled graph and circulant graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Yazarlar

Dalibor Froncek

Aaron Shepanik Bu kişi benim

Yayımlanma Tarihi 9 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 3 Sayı: 3

Kaynak Göster

APA Froncek, D., & Shepanik, A. (2016). Regular handicap tournaments of high degree. Journal of Algebra Combinatorics Discrete Structures and Applications, 3(3), 159-164. https://doi.org/10.13069/jacodesmath.22530
AMA Froncek D, Shepanik A. Regular handicap tournaments of high degree. Journal of Algebra Combinatorics Discrete Structures and Applications. Ağustos 2016;3(3):159-164. doi:10.13069/jacodesmath.22530
Chicago Froncek, Dalibor, ve Aaron Shepanik. “Regular handicap tournaments of high degree”. Journal of Algebra Combinatorics Discrete Structures and Applications 3, sy. 3 (Ağustos 2016): 159-64. https://doi.org/10.13069/jacodesmath.22530.
EndNote Froncek D, Shepanik A (01 Ağustos 2016) Regular handicap tournaments of high degree. Journal of Algebra Combinatorics Discrete Structures and Applications 3 3 159–164.
IEEE D. Froncek ve A. Shepanik, “Regular handicap tournaments of high degree”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 3, sy. 3, ss. 159–164, 2016, doi: 10.13069/jacodesmath.22530.
ISNAD Froncek, Dalibor - Shepanik, Aaron. “Regular handicap tournaments of high degree”. Journal of Algebra Combinatorics Discrete Structures and Applications 3/3 (Ağustos2016), 159-164. https://doi.org/10.13069/jacodesmath.22530.
JAMA Froncek D, Shepanik A. Regular handicap tournaments of high degree. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3:159–164.
MLA Froncek, Dalibor ve Aaron Shepanik. “Regular handicap tournaments of high degree”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 3, sy. 3, 2016, ss. 159-64, doi:10.13069/jacodesmath.22530.
Vancouver Froncek D, Shepanik A. Regular handicap tournaments of high degree. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3(3):159-64.