Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 45 - 49, 15.01.2018
https://doi.org/10.13069/jacodesmath.369864

Öz

Kaynakça

  • [1] J. Chifman, Note on direct products of certain classes of finite groups, Commun. Algebra 37(5) (2009) 1831–1842.
  • [2] R. Dedekind, Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann. 48(4) (1897) 548–561.
  • [3] S. Dougherty, J.-L. Kim, P. Solé, Open problems in coding theory, Contemp. Math. 634 (2015) 79–99.
  • [4] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941) 171–199.
  • [5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
  • [6] M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70(2) (1951) 345–371.
  • [7] G. Zacher, Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito, Rend. Sem. Mat. Univ. Padova 31 (1961) 412–422.

No MacWilliams duality for codes over nonabelian groups

Yıl 2018, , 45 - 49, 15.01.2018
https://doi.org/10.13069/jacodesmath.369864

Öz

Dougherty, Kim, and Sol\'e [3] have asked whether there is a duality theory and a MacWilliams formula for codes over nonabelian groups, or more generally, whether there is any subclass of nonabelian groups which have such a duality theory. We answer this in the negative by showing that there does not exist a nonabelian group $G$ with a duality theory on the subgroups of $G^n$ for all $n$.

Kaynakça

  • [1] J. Chifman, Note on direct products of certain classes of finite groups, Commun. Algebra 37(5) (2009) 1831–1842.
  • [2] R. Dedekind, Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann. 48(4) (1897) 548–561.
  • [3] S. Dougherty, J.-L. Kim, P. Solé, Open problems in coding theory, Contemp. Math. 634 (2015) 79–99.
  • [4] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941) 171–199.
  • [5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
  • [6] M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70(2) (1951) 345–371.
  • [7] G. Zacher, Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito, Rend. Sem. Mat. Univ. Padova 31 (1961) 412–422.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

M. Ryan Julian Jr. Bu kişi benim 0000-0002-6117-1415

Yayımlanma Tarihi 15 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Julian Jr., M. R. (2018). No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(1), 45-49. https://doi.org/10.13069/jacodesmath.369864
AMA Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. Ocak 2018;5(1):45-49. doi:10.13069/jacodesmath.369864
Chicago Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, sy. 1 (Ocak 2018): 45-49. https://doi.org/10.13069/jacodesmath.369864.
EndNote Julian Jr. MR (01 Ocak 2018) No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications 5 1 45–49.
IEEE M. R. Julian Jr., “No MacWilliams duality for codes over nonabelian groups”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 1, ss. 45–49, 2018, doi: 10.13069/jacodesmath.369864.
ISNAD Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/1 (Ocak 2018), 45-49. https://doi.org/10.13069/jacodesmath.369864.
JAMA Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:45–49.
MLA Julian Jr., M. Ryan. “No MacWilliams Duality for Codes over Nonabelian Groups”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 1, 2018, ss. 45-49, doi:10.13069/jacodesmath.369864.
Vancouver Julian Jr. MR. No MacWilliams duality for codes over nonabelian groups. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(1):45-9.