Let $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submodule
of $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$)
provided that, for every proper submodule $K$ of $M$ containing $N$, there is
a nonzero homomorphism $f:M/K\rightarrow M$. We present some conditions
that a module $M$ is coretractable if and only if $M$ is coretractable relative to a submodule $N$. We also provide some examples to illustrate special cases.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 7 Mayıs 2019 |
Yayımlandığı Sayı | Yıl 2019 |