Araştırma Makalesi
BibTex RIS Kaynak Göster

Hyper-Zagreb indices of graphs and its applications

Yıl 2021, , 9 - 22, 15.01.2021
https://doi.org/10.13069/jacodesmath.867532

Öz

The first and second Hyper-Zagreb index of a connected graph $G$ is defined by $HM_{1}(G)=\sum_{uv \in E(G)}[d(u)+d(v)]^{2}$ and $HM_{2}(G)=\sum_{uv \in E(G)}[d(u).d(v)]^{2}$. In this paper, the first and second Hyper-Zagreb indices of certain graphs are computed. Also the bounds for the first and second Hyper-Zagreb indices are determined. Further linear regression analysis of the degree based indices with the boiling points of benzenoid hydrocarbons is carried out. The linear model, based on the Hyper-Zagreb index, is better than the models corresponding to the other distance based indices.

Kaynakça

  • [1] A. R. Ashrafi, M. Ghorbani, Eccentric connectivity index of fullerenes. In: Gutman, I., Furtula, B. (eds.) Novel Molecular Structure Descriptors–Theory and Applications II, Uni. Kragujevac, Kragujevac (2010) 183–192.
  • [2] A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561–4566
  • [3] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, New York (1990)
  • [4] K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges and diameter, MATCH Commun. Math. Comput. Chem. 64 (2010) 647–660.
  • [5] K. C. Das, K. Xu, J. Nam, Zagreb indices of graphs, Front. Math. China 10 (2015) 567–582.
  • [6] K. C. Das, D. Lee, A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013) 117–125.
  • [7] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211–249.
  • [8] T. Doslic, M. Saheli, Eccentric connectivity index of benzenoid graphs. In: Gutman, I., Furtula, B. (eds.) Novel Molecular Structure Descriptors–Theory and Applications II, Uni. Kragujevac, Kragujevac (2010) 169–183.
  • [9] S. Gupta, M. Singh, A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002) 259–268.
  • [10] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
  • [11] I. Gutman, B. Furtula, Z. Kovijani c Vukicevi, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
  • [12] I. Gutman, B. Ruscic, N. Trinajstic, C. F. Wilcox, Graph theory and molecular orbitals, XII, acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
  • [13] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, Total Pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
  • [14] I. Gutman, Y. Yeh, S. Lee, Y. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651–661.
  • [15] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23–43.
  • [16] F. Harary, Graph Theory, Narosa Publishing House, New Delhi (1999)
  • [17] H. Hua, K. C. Das, The relationship between the eccentric connectivity index and Zagreb indices, Discrete Appl. Math. 161 (2013) 2480–2491.
  • [18] A. Ilic, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem. 65 (2011) 731–744.
  • [19] M. H. Khalifeh, H. Yousefi-Azari, Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804–811.
  • [20] V. Kumar, S. Sardana, A. K. Madan, Predicting anti-HIV activity of 2,3-diaryl-1, 3 thiazolidin-4- ones: Computational approach using reformed eccentric connectivity index, J. Mol. Model 10 (2004) 399–407.
  • [21] M. J. Morgan, S. Mukwembi, H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math. 311 (2011) 1229–1234.
  • [22] S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
  • [23] S. Nikolic, A. Milicevic, N. Trinajstic, A. Juric, On use of the variable Zagreb vM2 index in QSPR: boiling points of benzenoid hydrocarbons, Molecules, 9 (2004) 1208–1221.
  • [24] S. Nikolic, N. Trinajstic, Z. Mihalic, The Wiener index: Development and applications, Croat. Chem. Acta 68 (1995) 105–129.
  • [25] H. S. Ramane, V. V. Manjalapur, Note on the bounds on Wiener number of a graph, MATCH Commun. Math. Comput. Chem. 76 (2016) 19–22.
  • [26] H. S. Ramane, D. S. Revankar, A. B. Ganagi, On the Wiener index of a graph, J. Indones. Math. Soc. 18 (2012) 57–66.
  • [27] H. S. Ramane, A. S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing 55 (2017) 609– 627.
  • [28] S. Sardana, A. K. Madan, Application of graph theory: Relationship of molecular connectivity index, Wiener’s index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 85–98.
  • [29] R. Todeschini, Consonni, Handbook of Molecular Descriptors, Wiley, Weinheim (2000).
  • [30] D. Vukicevic, A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524–528.
  • [31] H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH Commun. Math. Comput. Chem. 50 (2004) 117–132.
  • [32] H. Wiener, Structural determination of paraffin boiling point, J. Am. Chem. Soc. 69 (1947) 17–20.
  • [33] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.
  • [34] B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010) 181–198.
Yıl 2021, , 9 - 22, 15.01.2021
https://doi.org/10.13069/jacodesmath.867532

Öz

Kaynakça

  • [1] A. R. Ashrafi, M. Ghorbani, Eccentric connectivity index of fullerenes. In: Gutman, I., Furtula, B. (eds.) Novel Molecular Structure Descriptors–Theory and Applications II, Uni. Kragujevac, Kragujevac (2010) 183–192.
  • [2] A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math. 235 (2011) 4561–4566
  • [3] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, New York (1990)
  • [4] K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges and diameter, MATCH Commun. Math. Comput. Chem. 64 (2010) 647–660.
  • [5] K. C. Das, K. Xu, J. Nam, Zagreb indices of graphs, Front. Math. China 10 (2015) 567–582.
  • [6] K. C. Das, D. Lee, A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013) 117–125.
  • [7] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211–249.
  • [8] T. Doslic, M. Saheli, Eccentric connectivity index of benzenoid graphs. In: Gutman, I., Furtula, B. (eds.) Novel Molecular Structure Descriptors–Theory and Applications II, Uni. Kragujevac, Kragujevac (2010) 169–183.
  • [9] S. Gupta, M. Singh, A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002) 259–268.
  • [10] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
  • [11] I. Gutman, B. Furtula, Z. Kovijani c Vukicevi, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
  • [12] I. Gutman, B. Ruscic, N. Trinajstic, C. F. Wilcox, Graph theory and molecular orbitals, XII, acyclic polyenes, J. Chem. Phys. 62 (1975) 3399–3405.
  • [13] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, Total Pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
  • [14] I. Gutman, Y. Yeh, S. Lee, Y. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651–661.
  • [15] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23–43.
  • [16] F. Harary, Graph Theory, Narosa Publishing House, New Delhi (1999)
  • [17] H. Hua, K. C. Das, The relationship between the eccentric connectivity index and Zagreb indices, Discrete Appl. Math. 161 (2013) 2480–2491.
  • [18] A. Ilic, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem. 65 (2011) 731–744.
  • [19] M. H. Khalifeh, H. Yousefi-Azari, Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804–811.
  • [20] V. Kumar, S. Sardana, A. K. Madan, Predicting anti-HIV activity of 2,3-diaryl-1, 3 thiazolidin-4- ones: Computational approach using reformed eccentric connectivity index, J. Mol. Model 10 (2004) 399–407.
  • [21] M. J. Morgan, S. Mukwembi, H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math. 311 (2011) 1229–1234.
  • [22] S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
  • [23] S. Nikolic, A. Milicevic, N. Trinajstic, A. Juric, On use of the variable Zagreb vM2 index in QSPR: boiling points of benzenoid hydrocarbons, Molecules, 9 (2004) 1208–1221.
  • [24] S. Nikolic, N. Trinajstic, Z. Mihalic, The Wiener index: Development and applications, Croat. Chem. Acta 68 (1995) 105–129.
  • [25] H. S. Ramane, V. V. Manjalapur, Note on the bounds on Wiener number of a graph, MATCH Commun. Math. Comput. Chem. 76 (2016) 19–22.
  • [26] H. S. Ramane, D. S. Revankar, A. B. Ganagi, On the Wiener index of a graph, J. Indones. Math. Soc. 18 (2012) 57–66.
  • [27] H. S. Ramane, A. S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing 55 (2017) 609– 627.
  • [28] S. Sardana, A. K. Madan, Application of graph theory: Relationship of molecular connectivity index, Wiener’s index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 85–98.
  • [29] R. Todeschini, Consonni, Handbook of Molecular Descriptors, Wiley, Weinheim (2000).
  • [30] D. Vukicevic, A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (2010) 524–528.
  • [31] H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH Commun. Math. Comput. Chem. 50 (2004) 117–132.
  • [32] H. Wiener, Structural determination of paraffin boiling point, J. Am. Chem. Soc. 69 (1947) 17–20.
  • [33] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.
  • [34] B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010) 181–198.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Girish V. Rajasekharaiah Bu kişi benim 0000-0002-0036-6542

Usha P. Murthy Bu kişi benim 0000-0001-9855-1887

Yayımlanma Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Rajasekharaiah, G. V., & Murthy, U. P. (2021). Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications, 8(1), 9-22. https://doi.org/10.13069/jacodesmath.867532
AMA Rajasekharaiah GV, Murthy UP. Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications. Ocak 2021;8(1):9-22. doi:10.13069/jacodesmath.867532
Chicago Rajasekharaiah, Girish V., ve Usha P. Murthy. “Hyper-Zagreb Indices of Graphs and Its Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications 8, sy. 1 (Ocak 2021): 9-22. https://doi.org/10.13069/jacodesmath.867532.
EndNote Rajasekharaiah GV, Murthy UP (01 Ocak 2021) Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications 8 1 9–22.
IEEE G. V. Rajasekharaiah ve U. P. Murthy, “Hyper-Zagreb indices of graphs and its applications”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 8, sy. 1, ss. 9–22, 2021, doi: 10.13069/jacodesmath.867532.
ISNAD Rajasekharaiah, Girish V. - Murthy, Usha P. “Hyper-Zagreb Indices of Graphs and Its Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications 8/1 (Ocak 2021), 9-22. https://doi.org/10.13069/jacodesmath.867532.
JAMA Rajasekharaiah GV, Murthy UP. Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8:9–22.
MLA Rajasekharaiah, Girish V. ve Usha P. Murthy. “Hyper-Zagreb Indices of Graphs and Its Applications”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 8, sy. 1, 2021, ss. 9-22, doi:10.13069/jacodesmath.867532.
Vancouver Rajasekharaiah GV, Murthy UP. Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8(1):9-22.

Cited By