BibTex RIS Kaynak Göster

The 3-GDDs of type $g^3u^2$

Yıl 2016, Cilt: 3 Sayı: 3, 135 - 144, 09.08.2016
https://doi.org/10.13069/jacodesmath.52790

Öz

A 3-GDD of type ${g^3u^2}$ exists if and only if  $g$ and $u$ have the same parity, $3$ divides $u$ and $u\leq 3g$.Such a 3-GDD of type ${g^3u^2}$ is  equivalent to an edge  decomposition of $K_{g,g,g,u,u}$ into triangles.

Kaynakça

  • D. Bryant, D. Horsley, Steiner triple systems with two disjoint subsystems, J. Combin. Des. 14(1) (2006) 14–24.
  • C. J. Colbourn, Small group divisible designs with block size three, J. Combin. Math. Combin. Comput. 14 (1993) 153–171.
  • C. J. Colbourn, C. A. Cusack, D. L. Kreher, Partial Steiner triple systems with equal-sized holes, J. Combin. Theory Ser. A 70(1) (1995) 56–65.
  • C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, Second Edition, CRC/Chapman and Hall, Boca Raton, FL, 2007.
  • C. J. Colbourn, D. Hoffman, R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59(1) (1992) 73–89.
  • C. J. Colbourn, M. A. Oravas, R. S. Rees, Steiner triple systems with disjoint or intersecting subsystems, J. Combin. Des. 8(1) (2000) 58–77.
  • R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J. Combin. Theory Ser. A 45(2) (1987) 207-225.
  • R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972) 220–245.
  • R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972) 246–273.
Yıl 2016, Cilt: 3 Sayı: 3, 135 - 144, 09.08.2016
https://doi.org/10.13069/jacodesmath.52790

Öz

Kaynakça

  • D. Bryant, D. Horsley, Steiner triple systems with two disjoint subsystems, J. Combin. Des. 14(1) (2006) 14–24.
  • C. J. Colbourn, Small group divisible designs with block size three, J. Combin. Math. Combin. Comput. 14 (1993) 153–171.
  • C. J. Colbourn, C. A. Cusack, D. L. Kreher, Partial Steiner triple systems with equal-sized holes, J. Combin. Theory Ser. A 70(1) (1995) 56–65.
  • C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of Combinatorial Designs, Second Edition, CRC/Chapman and Hall, Boca Raton, FL, 2007.
  • C. J. Colbourn, D. Hoffman, R. Rees, A new class of group divisible designs with block size three, J. Combin. Theory Ser. A 59(1) (1992) 73–89.
  • C. J. Colbourn, M. A. Oravas, R. S. Rees, Steiner triple systems with disjoint or intersecting subsystems, J. Combin. Des. 8(1) (2000) 58–77.
  • R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J. Combin. Theory Ser. A 45(2) (1987) 207-225.
  • R. M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972) 220–245.
  • R. M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972) 246–273.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Charles J. Colbourn Bu kişi benim

Melissa S. Keranen Bu kişi benim

Donald L. Kreher Bu kişi benim

Yayımlanma Tarihi 9 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 3 Sayı: 3

Kaynak Göster

APA Colbourn, C. J., Keranen, M. S., & Kreher, D. L. (2016). The 3-GDDs of type $g^3u^2$. Journal of Algebra Combinatorics Discrete Structures and Applications, 3(3), 135-144. https://doi.org/10.13069/jacodesmath.52790
AMA Colbourn CJ, Keranen MS, Kreher DL. The 3-GDDs of type $g^3u^2$. Journal of Algebra Combinatorics Discrete Structures and Applications. Ağustos 2016;3(3):135-144. doi:10.13069/jacodesmath.52790
Chicago Colbourn, Charles J., Melissa S. Keranen, ve Donald L. Kreher. “The 3-GDDs of Type $g^3u^2$”. Journal of Algebra Combinatorics Discrete Structures and Applications 3, sy. 3 (Ağustos 2016): 135-44. https://doi.org/10.13069/jacodesmath.52790.
EndNote Colbourn CJ, Keranen MS, Kreher DL (01 Ağustos 2016) The 3-GDDs of type $g^3u^2$. Journal of Algebra Combinatorics Discrete Structures and Applications 3 3 135–144.
IEEE C. J. Colbourn, M. S. Keranen, ve D. L. Kreher, “The 3-GDDs of type $g^3u^2$”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 3, sy. 3, ss. 135–144, 2016, doi: 10.13069/jacodesmath.52790.
ISNAD Colbourn, Charles J. vd. “The 3-GDDs of Type $g^3u^2$”. Journal of Algebra Combinatorics Discrete Structures and Applications 3/3 (Ağustos 2016), 135-144. https://doi.org/10.13069/jacodesmath.52790.
JAMA Colbourn CJ, Keranen MS, Kreher DL. The 3-GDDs of type $g^3u^2$. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3:135–144.
MLA Colbourn, Charles J. vd. “The 3-GDDs of Type $g^3u^2$”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 3, sy. 3, 2016, ss. 135-44, doi:10.13069/jacodesmath.52790.
Vancouver Colbourn CJ, Keranen MS, Kreher DL. The 3-GDDs of type $g^3u^2$. Journal of Algebra Combinatorics Discrete Structures and Applications. 2016;3(3):135-44.