Araştırma Makalesi
BibTex RIS Kaynak Göster

A modified bordered construction for self-dual codes from group rings

Yıl 2020, Cilt: 7 Sayı: 2, 103 - 119, 07.05.2020
https://doi.org/10.13069/jacodesmath.729402

Öz

We describe a bordered construction for self-dual codes coming from group rings. We apply the constructions coming from the cyclic and dihedral groups over several alphabets to obtain extremal binary self-dual codes of various lengths. In particular we find a new extremal binary self-dual code of length 78.

Kaynakça

  • [1] D. Anev, N. Yankov, Self–dual codes of length 78 with an automorphism of order 13, in XVth International Workshop on Optimal Codes and Related Topics, Sofia, Bulgaria, July 2017.
  • [2] F. Bernhardt, P. Landrock, O. Manz, The extended Golay codes considered as ideals, J. Combin. Theory Ser. A 55(2) (1990) 235–246.
  • [3] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self–dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319–1333.
  • [4] R. Dontcheva, New binary [70; 35; 12] self-dual and binary [72; 36; 12] self-dual doubly-even codes, Serdica Mathematical Journal 24(4) (2001) 287–302.
  • [5] S. T. Dougherty, J. Gildea, R. Taylor, A. Tylshchak, Group rings, G-Codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt. 86(9) (2018) 2115–2138.
  • [6] S. T. Dougherty, P. Gaborit, M. Harada, P. Sole, Type II codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999) 32–45.
  • [7] S. T. Dougherty, M. Harda, T. A. Gulliver, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036–2047.
  • [8] S. T. Dougherty, B. Yildiz, S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl. 17(3) (2011) 205–219.
  • [9] S. T. Dougherty, B. Yildiz, S. Karadeniz, Self–dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure Appl. Mathematics 6(1) (2013) 89–106.
  • [10] P. Gaborit, V. Pless, P. Sole, O. Atkin, Type II codes over $\mathbb{F}_{4}$, Finite Fields Appl. 8(2) (2002) 171–183.
  • [11] J. Gildea, A. Kaya, R. Taylor, B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl. 51 (2018) 71–92.
  • [12] M. Gurel, N. Yankov, Self–dual codes with an automophism of order 17, Mathematical Commun. 21(1) (2016) 97–107.
  • [13] M. Harada, The existence of a self–dual [70; 35; 12] code and formally self–dual codes, Finite Fields Appl. 3(2) (1997) 131–139.
  • [14] M. Harada, K. Saito, Singly even self–dual codes constructed from Hadamard matrices of order 28, Australas. J. Combin. 70 (2018) 288–296.
  • [15] T. Hurley, Group rings and rings of matrices, Int. J. Pure and Appl. Math. 31(3) (2006) 319–335.
  • [16] T. Hurley, Self–dual, dual–containing and related quantum codes from group rings, arXiv:0711.3983, 2007.
  • [17] S. Ling, P. Sole, Type II codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$", Europ. J. Combinatorics 22 (2001) 983–997.
  • [18] I. McLoughlin, A group ring construction of the [48; 24; 12] Type II linear block code, Des. Codes Crypt. 63(1) (2012) 29–41.
  • [19] I. McLoughlin, T. Hurley, A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory 54(9) (2008) 4381–4383.
  • [20] E. M. Rains, Shadow bounds for self–dual codes, IEEE Trans. Inform. Theory 44 (1998) 134–139.
  • [21] N. Yankov, D. Anev, M. Gurel, Self-dual codes with an automorphism of order 13, Adv. Math. Commun. 11(3) (2017) 635–645.
  • [22] T. Zhang, J. Michel, T. Feng, G. Ge, On the existence of certain optimal self–dual codes with lengths between 74 and 116, The Electronic Journal of Combinatorics 22(4) (2015) 1–25.
Yıl 2020, Cilt: 7 Sayı: 2, 103 - 119, 07.05.2020
https://doi.org/10.13069/jacodesmath.729402

Öz

Kaynakça

  • [1] D. Anev, N. Yankov, Self–dual codes of length 78 with an automorphism of order 13, in XVth International Workshop on Optimal Codes and Related Topics, Sofia, Bulgaria, July 2017.
  • [2] F. Bernhardt, P. Landrock, O. Manz, The extended Golay codes considered as ideals, J. Combin. Theory Ser. A 55(2) (1990) 235–246.
  • [3] J. H. Conway, N. J. A. Sloane, A new upper bound on the minimal distance of self–dual codes, IEEE Trans. Inform. Theory 36(6) (1990) 1319–1333.
  • [4] R. Dontcheva, New binary [70; 35; 12] self-dual and binary [72; 36; 12] self-dual doubly-even codes, Serdica Mathematical Journal 24(4) (2001) 287–302.
  • [5] S. T. Dougherty, J. Gildea, R. Taylor, A. Tylshchak, Group rings, G-Codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt. 86(9) (2018) 2115–2138.
  • [6] S. T. Dougherty, P. Gaborit, M. Harada, P. Sole, Type II codes over $\mathbb{F}_{2}+u\mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999) 32–45.
  • [7] S. T. Dougherty, M. Harda, T. A. Gulliver, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43(6) (1997) 2036–2047.
  • [8] S. T. Dougherty, B. Yildiz, S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl. 17(3) (2011) 205–219.
  • [9] S. T. Dougherty, B. Yildiz, S. Karadeniz, Self–dual codes over $R_k$ and binary self-dual codes, Eur. J. Pure Appl. Mathematics 6(1) (2013) 89–106.
  • [10] P. Gaborit, V. Pless, P. Sole, O. Atkin, Type II codes over $\mathbb{F}_{4}$, Finite Fields Appl. 8(2) (2002) 171–183.
  • [11] J. Gildea, A. Kaya, R. Taylor, B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl. 51 (2018) 71–92.
  • [12] M. Gurel, N. Yankov, Self–dual codes with an automophism of order 17, Mathematical Commun. 21(1) (2016) 97–107.
  • [13] M. Harada, The existence of a self–dual [70; 35; 12] code and formally self–dual codes, Finite Fields Appl. 3(2) (1997) 131–139.
  • [14] M. Harada, K. Saito, Singly even self–dual codes constructed from Hadamard matrices of order 28, Australas. J. Combin. 70 (2018) 288–296.
  • [15] T. Hurley, Group rings and rings of matrices, Int. J. Pure and Appl. Math. 31(3) (2006) 319–335.
  • [16] T. Hurley, Self–dual, dual–containing and related quantum codes from group rings, arXiv:0711.3983, 2007.
  • [17] S. Ling, P. Sole, Type II codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$", Europ. J. Combinatorics 22 (2001) 983–997.
  • [18] I. McLoughlin, A group ring construction of the [48; 24; 12] Type II linear block code, Des. Codes Crypt. 63(1) (2012) 29–41.
  • [19] I. McLoughlin, T. Hurley, A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory 54(9) (2008) 4381–4383.
  • [20] E. M. Rains, Shadow bounds for self–dual codes, IEEE Trans. Inform. Theory 44 (1998) 134–139.
  • [21] N. Yankov, D. Anev, M. Gurel, Self-dual codes with an automorphism of order 13, Adv. Math. Commun. 11(3) (2017) 635–645.
  • [22] T. Zhang, J. Michel, T. Feng, G. Ge, On the existence of certain optimal self–dual codes with lengths between 74 and 116, The Electronic Journal of Combinatorics 22(4) (2015) 1–25.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Joe Gıldea Bu kişi benim

Abidin Kaya Bu kişi benim 0000-0003-0175-1909

Alexander Tylyshchak Bu kişi benim

Bahattin Yıldız Bu kişi benim 0000-0001-8106-3123

Yayımlanma Tarihi 7 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

APA Gıldea, J., Kaya, A., Tylyshchak, A., Yıldız, B. (2020). A modified bordered construction for self-dual codes from group rings. Journal of Algebra Combinatorics Discrete Structures and Applications, 7(2), 103-119. https://doi.org/10.13069/jacodesmath.729402
AMA Gıldea J, Kaya A, Tylyshchak A, Yıldız B. A modified bordered construction for self-dual codes from group rings. Journal of Algebra Combinatorics Discrete Structures and Applications. Mayıs 2020;7(2):103-119. doi:10.13069/jacodesmath.729402
Chicago Gıldea, Joe, Abidin Kaya, Alexander Tylyshchak, ve Bahattin Yıldız. “A Modified Bordered Construction for Self-Dual Codes from Group Rings”. Journal of Algebra Combinatorics Discrete Structures and Applications 7, sy. 2 (Mayıs 2020): 103-19. https://doi.org/10.13069/jacodesmath.729402.
EndNote Gıldea J, Kaya A, Tylyshchak A, Yıldız B (01 Mayıs 2020) A modified bordered construction for self-dual codes from group rings. Journal of Algebra Combinatorics Discrete Structures and Applications 7 2 103–119.
IEEE J. Gıldea, A. Kaya, A. Tylyshchak, ve B. Yıldız, “A modified bordered construction for self-dual codes from group rings”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 2, ss. 103–119, 2020, doi: 10.13069/jacodesmath.729402.
ISNAD Gıldea, Joe vd. “A Modified Bordered Construction for Self-Dual Codes from Group Rings”. Journal of Algebra Combinatorics Discrete Structures and Applications 7/2 (Mayıs 2020), 103-119. https://doi.org/10.13069/jacodesmath.729402.
JAMA Gıldea J, Kaya A, Tylyshchak A, Yıldız B. A modified bordered construction for self-dual codes from group rings. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7:103–119.
MLA Gıldea, Joe vd. “A Modified Bordered Construction for Self-Dual Codes from Group Rings”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 2, 2020, ss. 103-19, doi:10.13069/jacodesmath.729402.
Vancouver Gıldea J, Kaya A, Tylyshchak A, Yıldız B. A modified bordered construction for self-dual codes from group rings. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7(2):103-19.