Review Article
BibTex RIS Cite

Chloroplast Genetic Engineering in Crop Plants: Techniques and Applications

Year 2025, Volume: 9 Issue: Special, 239 - 246, 28.12.2025
https://doi.org/10.31015/2025.si.10

Abstract

For molecular farming and crop improvement, chloroplast transformation has emerged as a compelling alternative to nuclear genetic modification. In this review we will discuss the biology of plastid genomes, highlighting their polyploidy, prokaryotic transcriptional organization, and maternal inheritance, all of which support high-level, stable, and contained transgene expression. Key components of transformation vectors, including homologous recombination sites and selectable markers, are detailed, alongside strategies for multigene operon construction. The article evaluates delivery methods, primarily biolistics and PEG-mediated protoplast transformation, while addressing technical barriers such as low regeneration efficiency in non model and monocot species. Applications are discussed in tobacco and food crops, with examples ranging from vaccine production to stress tolerance and pest resistance. Limitations such as transformation efficiency, species specificity, and regulatory hurdles are critically assessed. Recent advances in base editing, synthetic biology toolkits, and marker-free systems offer potential pathways toward broader adoption. The review concludes that while chloroplast biotechnology holds clear advantages in expression control and biosafety, further innovation in transformation protocols and genome editing delivery is essential for its practical deployment in diverse crops. This synthesis provides a framework for ongoing research aimed at overcoming the technical and regulatory constraints that currently limit widespread use of chloroplast engineering in agriculture.

References

  • Adem, M., Beyene, D., & Feyissa, T. (2017). Recent achievements obtained by chloroplast transformation. Plant methods, 13, 30. https://doi.org/10.1186/s13007-017-0179-1
  • An, Y., Wang, Y., Wang, X., & Xiao, J. (2022). Development of chloroplast transformation and gene expression regulation technology in land plants. Frontiers in plant science, 13, 1037038. https://doi.org/10.3389/fpls.2022.1037038
  • Arimura, S. I., & Nakazato, I. (2024). Genome Editing of Plant Mitochondrial and Chloroplast Genomes. Plant & cell physiology, 65(4), 477–483. https://doi.org/10.1093/pcp/pcad162
  • Azhagiri, A. K., & Maliga, P. (2007). Exceptional paternal inheritance of plastids in Arabidopsis suggests that low‐frequency leakage of plastids via pollen may be universal in plants. The Plant Journal, 52(5), 817–823. https://doi.org/10.1111/j.1365-313X.2007.03278.x
  • Bharadwaj, R. K. B., Kumar, S. R., & Sathishkumar, R. (2019). Green Biotechnology: A Brief Update on Plastid Genome Engineering. Advances in Plant Transgenics: Methods and Applications, 79–100. https://doi.org/10.1007/978-981-13-9624-3_4
  • Chebolu, S., & Daniell, H. (2009). Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Current topics in microbiology and immunology, 332, 33–54. https://doi.org/10.1007/978-3-540-70868-1_3
  • Daniell H. (2007). Transgene containment by maternal inheritance: effective or elusive?. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 6879–6880. https://doi.org/10.1073/pnas.0702219104
  • Daniell, H., Khan, M. S., & Allison, L. (2002). Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in plant science, 7(2), 84–91. https://doi.org/10.1016/s1360-1385(01)02193-8
  • Daniell, H., & Dhingra, A. (2002). Multigene engineering: dawn of an exciting new era in biotechnology. Current opinion in biotechnology, 13(2), 136–141. https://doi.org/10.1016/s0958-1669(02)00297-5
  • Díaz, A. H., & Koop, H.-U. (2014). Nicotiana tabacum: Peg-mediated plastid transformation. In P. Maliga (Ed.), Chloroplast Biotechnology: Methods and Protocols (pp. 165–175). Humana Press. https://doi.org/10.1007/978-1-62703-995-6_9
  • Dorogova, N. V., & Sidorchuk, Y. V. (2023). The search of a molecular “swiss knife” for chloroplast genomic editing. Horticulturae, 9(12), 1338. https://doi.org/10.3390/horticulturae9121338
  • Esland, L., Larrea-Alvarez, M., & Purton, S. (2018). Selectable markers and reporter genes for engineering the chloroplast of chlamydomonas reinhardtii. Biology, 7(4), 46. https://doi.org/10.3390/biology7040046
  • Frame, B. R., Zhang, H., Cocciolone, S. M., Sidorenko, L. V., Dietrich, C. R., Pegg, S. E., Zhen, S., Schnable, P. S., & Wang, K. (2000). Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cellular & Developmental Biology – Plant, 36(1), 21–29. https://doi.org/10.1007/s11627-000-0007-5
  • Gao, M., Li, Y., Xue, X., Wang, X., & Long, J. (2012). Stable plastid transformation for high-level recombinant protein expression: Promises and challenges. Journal of Biomedicine and Biotechnology, 2012, 1–16. https://doi.org/10.1155/2012/158232
  • Ghedira, R., De Buck, S., Nolf, J., & Depicker, A. (2013). The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. Molecular plant-microbe interactions : MPMI, 26(7), 823–832. https://doi.org/10.1094/MPMI-11-12-0267-R
  • Golds, T., Maliga, P., & Koop, H.-U. (1993). Stable plastid transformation in peg-treated protoplasts of nicotiana tabacum. Nature Biotechnology, 11(1), 95–97. https://doi.org/10.1038/nbt0193-95
  • He, G. (2022). Engineering chloroplasts for insect pest control. Proceedings of the National Academy of Sciences, 119(22), e2205125119. https://doi.org/10.1073/pnas.2205125119
  • Jin, S., & Daniell, H. (2015). The engineered chloroplast genome just got smarter. Trends in Plant Science, 20(10), 622–640. https://doi.org/10.1016/j.tplants.2015.07.004
  • Johnson, K., Cao Chu, U., Anthony, G., Wu, E., Che, P., & Jones, T. J. (2023). Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. Frontiers in Plant Science, 14, 1151762. https://doi.org/10.3389/fpls.2023.1151762
  • Kaushal, C., Abdin, M. Z., & Kumar, S. (2020). Chloroplast genome transformation of medicinal plant Artemisia annua. Plant Biotechnology Journal, 18(11), 2155–2157. https://doi.org/10.1111/pbi.13379
  • Kemper, E. L., Joséda Silva, M., & Arruda, P. (1996). Effect of microprojectile bombardment parameters and osmotic treatment on particle penetration and tissue damage in transiently transformed cultured immature maize (Zea mays L.) embryos. Plant Science, 121(1), 85–93. https://doi.org/10.1016/S0168-9452(96)04500-1
  • Kong, M., Wu, Y., Wang, Z., Qu, W., Lan, Y., Chen, X., Liu, Y., Shahnaz, P., Yang, Z., Yu, Q., & Mi, H. (2021). A novel chloroplast protein rna processing 8 is required for the expression of chloroplast genes and chloroplast development in arabidopsis thaliana. Frontiers in Plant Science, 12, 700975. https://doi.org/10.3389/fpls.2021.700975
  • Li, S., Zhao, R., Ye, T., Guan, R., Xu, L., Ma, X., Zhang, J., Xiao, S., & Yuan, D. (2022). Isolation, purification and PEG-mediated transient expression of mesophyll protoplasts in Camellia oleifera. Plant Methods, 18(1), 141. https://doi.org/10.1186/s13007-022-00972-1
  • Long, Y., Yang, Y., Pan, G., & Shen, Y. (2022). New Insights Into Tissue Culture Plant-Regeneration Mechanisms. Frontiers in plant science, 13, 926752. https://doi.org/10.3389/fpls.2022.926752
  • Lu, Y., Rijzaani, H., Karcher, D., Ruf, S., & Bock, R. (2013). Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences of the United States of America, 110(8), E623–E632. https://doi.org/10.1073/pnas.1216898110
  • Martin Avila, E., Gisby, M. F., & Day, A. (2016). Seamless editing of the chloroplast genome in plants. BMC Plant Biology, 16(1), 168. https://doi.org/10.1186/s12870-016-0857-6
  • Narra, M., Nakazato, I., Polley, B., Arimura, S., Woronuk, G. N., & Bhowmik, P. K. (2025). Recent trends and advances in chloroplast engineering and transformation methods. Frontiers in Plant Science, 16, 1526578. https://doi.org/10.3389/fpls.2025.1526578
  • Occhialini, A., Piatek, A. A., Pfotenhauer, A. C., Frazier, T. P., Stewart, C. N., & Lenaghan, S. C. (2019). Mochlo: A versatile, modular cloning toolbox for chloroplast biotechnology. Plant Physiology, 179(3), 943–957. https://doi.org/10.1104/pp.18.01220
  • Occhialini, A., Pfotenhauer, A. C., Frazier, T. P., Li, L., Harbison, S. A., Lail, A. J., Mebane, Z., Piatek, A. A., Rigoulot, S. B., Daniell, H., Stewart, C. N., Jr, & Lenaghan, S. C. (2020). Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Scientific reports, 10(1), 21144. https://doi.org/10.1038/s41598-020-78237-x
  • O’Neill, C., Horváth, G. V., Horváth, E., Dix, P. J., & Medgyesy, P. (1993). Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. The Plant journal : for cell and molecular biology, 3(5), 729–738.
  • Petrillo, C. P., Carneiro, N. P., Purcino, A. Á. C., Carvalho, C. H. S., Alves, J. D., & Carneiro, A. A. (2008). Optimization of particle bombardment parameters for the genetic transformation of Brazilian maize inbred lines. Pesquisa Agropecuária Brasileira, 43, 371–378. https://doi.org/10.1590/S0100-204X2008000300012
  • Pfotenhauer, A. C., Occhialini, A., Nguyen, M.-A., Scott, H., Dice, L. T., Harbison, S. A., Li, L., Reuter, D. N., Schimel, T. M., Stewart, C. N., Beal, J., & Lenaghan, S. C. (2022). Building the plant synbio toolbox through combinatorial analysis of dna regulatory elements. ACS Synthetic Biology, 11(8), 2741–2755. https://doi.org/10.1021/acssynbio.2c00147
  • Rascón-Cruz, Q., González-Barriga, C. D., Iglesias-Figueroa, B. F., Trejo-Muñoz, J. C., Siqueiros-Cendón, T., Sinagawa-García, S. R., Arévalo-Gallegos, S., & Espinoza-Sánchez, E. A. (2021). Plastid transformation: Advances and challenges for its implementation in agricultural crops. Electronic Journal of Biotechnology, 51, 95–109. https://doi.org/10.1016/j.ejbt.2021.03.005
  • Rastogi Verma S. (2013). Genetically modified plants: public and scientific perceptions. ISRN biotechnology, 2013, 820671. https://doi.org/10.5402/2013/820671
  • Ruf, S., Karcher, D., & Bock, R. (2007). Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences, 104(17), 6998–7002. https://doi.org/10.1073/pnas.0700008104
  • Saldaña, C. L., Rodriguez-Grados, P., Chávez-Galarza, J. C., Feijoo, S., Guerrero-Abad, J. C., Vásquez, H. V., Maicelo, J. L., Jhoncon, J. H., & Arbizu, C. I. (2022). Unlocking the complete chloroplast genome of a native tree species from the amazon basin, capirona (Calycophyllum spruceanum, rubiaceae) and its comparative analysis with other ixoroideae species. Genes, 13(1), 113. https://doi.org/10.3390/genes13010113
  • Son, S., & Park, S. R. (2022). Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Frontiers in plant science, 13, 902413. https://doi.org/10.3389/fpls.2022.902413
  • Tayşi, N., Kaymaz, Y., Ateş, D., Sari, H., Toker, C., & Tanyolaç, M. B. (2022). Complete chloroplast genome sequence of Lens ervoides and comparison to Lens culinaris. Scientific reports, 12(1), 15068. https://doi.org/10.1038/s41598-022-17877-7
  • Tregoning, J. S., Nixon, P., Kuroda, H., Svab, Z., Clare, S., Bowe, F., Fairweather, N., Ytterberg, J., van Wijk, K. J., Dougan, G., & Maliga, P. (2003). Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic acids research, 31(4), 1174–1179. https://doi.org/10.1093/nar/gkg221
  • Verma, A. (2019). 9. Chloroplast genetic engineering: Concept and industrial applications. In Industrial Biotechnology (pp. 173–204). De Gruyter. https://www.degruyterbrill.com/document/doi/10.1515/9783110563337-009/html
  • Wu, M., Chen, A., Li, X., Li, X., Hou, X., & Liu, X. (2024). Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation. Advanced biotechnology, 2(4), 34. https://doi.org/10.1007/s44307-024-00041-9
  • Yeon, J., Miller, S. M., & Dejtisakdi, W. (2023). New synthetic operon vectors for expressing multiple proteins in the chlamydomonas reinhardtii chloroplast. Genes, 14(2), 368. https://doi.org/10.3390/genes14020368
  • Yu, Y., Yu, P. C., Chang, W. J., Yu, K., & Lin, C. S. (2020). Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?. International journal of molecular sciences, 21(14), 4854. https://doi.org/10.3390/ijms21144854
There are 43 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Review Article
Authors

Talha Raziq 0009-0006-2594-5715

Submission Date August 15, 2025
Acceptance Date October 25, 2025
Early Pub Date November 14, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Raziq, T. (2025). Chloroplast Genetic Engineering in Crop Plants: Techniques and Applications. International Journal of Agriculture Environment and Food Sciences, 9(Special), 239-246. https://doi.org/10.31015/2025.si.10

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27