Research Article
BibTex RIS Cite

Morphological Phenotyping for Cattle Breeds Classification from Unmanned Aerial Vehicle Imagery via Computer Vision and Deep Learning

Year 2025, Volume: 9 Issue: Special, 82 - 91, 28.12.2025
https://doi.org/10.31015/2025.si.16

Abstract

Advancements in unmanned aerial vehicle (UAV) technologies have facilitated a novel approach to dairy cattle breed morphological identification. The objective of this study was to employ UAV images, analyzed through deep convolutional neural networks (DCNN), to classify dairy cow breeds. The dataset comprises of 2004 RGB UAV images of dairy cows, including Holstein, Simmental, and Brown-Swiss breeds, obtained from the cattle breeding facility at Van Yüzüncü Yıl University. The images were preprocessed and segmented to contain a single cow each, and subsequently categorized as training (70%), validation (20%), and testing (10%) datasets. To determine the most effective architecture for breed classification, we compared a custom DCNN (C-DCNN) model to well-established pre-trained models including Xception, VGG19, and ResNet50. The C-DCNN demonstrated remarkable performance, achieving precision, recall, accuracy, and F1 scores of 0.98. Among the pre-trained models, Xception demonstrated superior results, with perfect accuracy and an F1 score of 1.00. Conversely, the VGG19 model exhibited a higher level of accuracy; nevertheless, it exhibited lower precision, recall, and F1 scores when evaluated on the test set, compared to the C-DCNN and Xception models. In contrast, ResNet50 displayed the lowest level of performance, with an accuracy of 0.74 and the highest levels of loss. This study demonstrates the potential of integrating DCNN models with UAV technology in precision livestock farming, offering a robust and efficient system for cattle breed classification.

Ethical Statement

This study was approved by the Van Yüzüncü Yıl University Animal Experiments Local Ethics Committee on November 30, 2023 (approval number 2023/13-08).

Thanks

The authors wish to express their gratitude to the staff of the cattle breeding facility at the research farm of Van Yüzüncü Yıl University for their invaluable assistance in animal handling. This study was presented as an abstract at the 6th International Food, Agriculture and Veterinary Sciences Congress, Ganja, Azerbaijan, 22-23 September 2023.

References

  • Alfarhood, S., Alrayeh, A., Safran, M., Alfarhood, M., & Che, D. (2023). Image-Based arabian camel breed classification using transfer learning on CNNs. Applied Sciences, 13(14), 8192. https://doi.org/10.3390/app13148192
  • Barbedo, J. G. A., Koenigkan, L. V., & Santos, P. M. (2020a). Cattle detection using oblique UAV images. Drones, 4(4), 75. https://doi.org/10.3390/drones4040075
  • Barbedo, J. G. A., Koenigkan, L. V., Santos, P. M., & Ribeiro, A. R. B. (2020b). Counting cattle in UAV Images-dealing with clustered animals and animal/background contrast changes. Sensors, 20(7), 2126. https://doi.org/10.3390/s20072126
  • Barbedo, J. G. A., Koenigkan, L. V., Santos, T. T., & Santos, P. M. (2019). A study on the detection of cattle in UAV images using deep learning. Sensors, 19(24), 5436. https://doi.org/10.3390/s19245436
  • Barney, S., Dlay, S., Crowe, A., Kyriazakis, I., & Leach, M. (2023). Deep learning pose estimation for multi-cattle lameness detection. Scientific reports, 13(1), 4499. https://doi.org/10.1038/s41598-023-31297-1
  • Bila, L., Malatji, D. P., & Tyasi, T. L. (2023). Morphological characterization of Sussex cattle at Huntersvlei farm, Free State Province, South Africa. Plos one, 18(9), e0292088. https://doi.org/10.1371/journal.pone.0292088
  • Çakmakçı, C., Magalhaes, D. R., Pacor, V. R., de Almeida, D. H. S., Çakmakçı, Y., Dalga, S., ... & Titto, C. G. (2023). Discovering the hidden personality of lambs: harnessing the power of deep convolutional neural networks (DCNNs) to predict temperament from facial images. Applied Animal Behaviour Science, 267, 106060. https://doi.org/10.1016/j.applanim.2023.106060
  • Cheng, T., Li, P., Ma, J., Tian, X., & Zhong, N. (2022). Identification of four chicken breeds by hyperspectral imaging combined with chemometrics. Processes, 10(8), 1484. https://doi.org/10.3390/pr10081484
  • Chollet, F. (2017a). Deep learning with Python. First ed. New York, USA: Manning.
  • Chollet, F. (2017b). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258).
  • Cihan, P., Saygili, A., Ozmen, N. E., & Akyuzlu, M. (2023). Identification and recognition of animals from biometric markers using computer vision approaches: A review. Kafkas Universitesi Veteriner Fakültesi Dergisi, 29(6), 581-593. https://doi.org/10.9775/kvfd.2023.30265
  • Fernandes, A. F. A., Dórea, J. R. R., & Rosa, G. J. M. (2020). Image analysis and computer vision applications in animal sciences: an overview. Frontiers in veterinary science, 7, 551269. https://doi.org/10.3389/fvets.2020.551269
  • Guo, Y., Yu Z., Hou Z., Zhang W., & Qi, G. (2023). Sheep face image dataset and DT-YOLOv5s for sheep breed recognition. Computers and Electronics in Agriculture; 211: 108027. https://doi.org/10.1016/j.compag.2023.108027
  • Hailu, A. & Getu, A. (2015). Breed Characterization: Tools and Their Applications. Open Access Library Journal, 2, 1-9. https://doi.org/10.4236/oalib.1101438
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.770-778). https://doi.org/10.1109/CVPR.2016.90. p 770-778
  • Huq, A., Zermas, D., & Bebis, G. (2023, October). Identification of abnormality in maize plants from uav images using deep learning approaches. In International Symposium on Visual Computing (pp. 583-596). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-47969-4_45
  • Islam, M. S., Yimer, N., Haron, A. W., Abdullah, F. F. J., Han, M. H. W., Mamat-Hamidi, K., & Zawawi, H. B. M. (2022). First study on phenotypic and morphological characteristics of Malaysian Kedah-Kelantan cattle (Bos indicus) and method of estimating their body weight. Veterinary world, 15(3), 728–736. https://doi.org/10.14202/vetworld.2022.728-736
  • Jingbo, X. U. E., Shang, X. I. A., Zhaojun, L. I., Xinyi, W. A. N. G., Liangyu, H. U. A. N. G., Runchao, H. E., & Shizhu, L. I. (2023). Intelligent identification of livestock, a source of Schistosoma japonicum infection, based on deep learning of unmanned aerial vehicle images. Chinese Journal of Schistosomiasis Control, 35(2), 121. https://doi.org/10.16250/j.32.1374.2022273
  • Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., Warner, R. D., Poblete, T., & Jongman, E. C. (2019). Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals, 9(12), 1089. https://doi.org/10.3390/ani9121089
  • Jung, D. H., Kim, N. Y., Moon, S. H., Jhin, C., Kim, H. J., Yang, J. S., ... & Park, S. H. (2021). Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals, 11(2), 357. https://doi.org/10.3390/ani11020357
  • Krizhevsky, A., Sutskever I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. . Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Manoj, S., Rakshith, S., & Kanchana, V. (2021, May). Identification of cattle breed using the convolutional neural network. In 2021 3rd International Conference on Signal Processing and Communication (ICPSC) (pp. 503-507). IEEE. https://doi.org/10.1109/ICSPC51351.2021.9451706
  • Mendu, A., Sehgal B., & Mendu, V. (2022). Cattle detection occlusion problem. arXiv. https://doi.org/10.48550/arXiv.2212.11418
  • Misganaw, M., Kefyalew A., & Asaminew, T. (2017). Conformation traits of dairy cattle populations in selected districts of northwestern Amhara, Ethiopia. Biodiversitas 18(4):1680-1695. https://doi.org/10.13057/biodiv/d180447
  • Mücher, C. A., Los, S., Franke, G. J., & Kamphuis, C. (2022). Detection, identification and posture recognition of cattle with satellites, aerial photography and UAVs using deep learning techniques. International Journal of Remote Sensing, 43(7), 2377-2392. https://doi.org/10.1080/01431161.2022.2051634
  • Neethirajan, S., & Kemp, B. (2021). Digital phenotyping in livestock farming. Animals, 11(7), 2009. https://doi.org/10.3390/ani11072009
  • Nir, O., Parmet, Y., Werner, D., Adin, G., & Halachmi, I. (2018). 3D Computer-vision system for automatically estimating heifer height and body mass. Biosystems engineering, 173, 4-10. https://doi.org/10.1016/j.biosystemseng.2017.11.014
  • Nye, J., Zingaretti, L. M., & Pérez-Enciso, M. (2020). Estimating conformational traits in dairy cattle with DeepAPS: a two-step deep learning automated phenotyping and segmentation approach. Frontiers in Genetics, 11, 513. https://doi.org/10.3389/fgene.2020.00513
  • Porto, J., Rezende, F., Astolfi, G., Weber, V., Pache, M., & Pistori, H. (2021). Automatic counting of cattle with Faster R-CNN on UAV images. In Anais do XVII Workshop de Visão Computacional, (pp. 1-6). Porto Alegre: SBC. https://doi.org/10.5753/wvc.2021.18880
  • Qiao, Y., Su, D., Kong, H., Sukkarieh, S., Lomax, S., & Clark, C. (2019a). Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine, 52(30), 318-323. https://doi.org/10.1016/j.ifacol.2019.12.558
  • Qiao, Y., Truman, M., & Sukkarieh, S. (2019b). Cattle segmentation and contour extraction based on Mask R-CNN for precision livestock farming. Computers and Electronics in Agriculture, 165, 104958. https://doi.org/10.1016/j.compag.2019.104958
  • Ruchay A. N., Dzhulamanov K. M., Gerasimov N. P., & Kolpakov V. I. (2021). Morphological characteristics of Aberdeen-Angus cows and heifers in relation to polymorphisms C528T and C73T of leptin gene. IOP Conference Series: Earth and Environmental Science, 848, 012077. https://doi.org/10.1088/1755-1315/848/1/012077
  • Sadgrove E. J., Falzon G., Miron D., & Lamb D. (2017). Fast object detection in pastoral landscapes using a colour feature extreme learning machine. Computers and Electronics in Agriculture, 139: 204–212. https://doi.org/10.1016/j.compag.2017.05.017
  • Sarwar, F., Griffin A., Rehman S. U., & Pasang T. (2021). Detecting sheep in UAV images. Computers and Electronics in Agriculture. 187: 106219. https://doi.org/10.1016/j.compag.2021.106219
  • Schmidt, T. B., Lancaster, J. M., Psota, E., Mote, B. E., Hulbert, L. E., Holliday, A., ... & Pérez, L. C. (2022). Evaluation of a novel computer vision-based livestock monitoring system to identify and track specific behaviors of individual nursery pigs within a group-housed environment. Translational Animal Science, 6(3), txac082. https://doi.org/10.1093/tas/txac082
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Seidel A., Krattenmacher Nina., & Thaller, G. (2020). Dealing with complexity of new phenotypes in modern dairy cattle breeding, Animal Frontiers,10(2), 23–28. https://doi.org/10.1093/af/vfaa005
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556
  • van den Berg, I., Boichard, D., & Lund, M. S. (2016). Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds. Journal of dairy science, 99(11), 8932–8945. https://doi.org/10.3168/jds.2016-11073
  • Vieira Ventura, R., Fonseca E Silva, F., Manuel Yáñez, J., & Brito, L. F. (2020). Opportunities and challenges of phenomics applied to livestock and aquaculture breeding in South America. Animal frontiers, 10(2), 45–52. https://doi.org/10.1093/af/vfaa008
  • Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 9. https://doi.org/10.1186/s40537-016-0043-6
  • Weng, Z., Meng, F., Liu, S., Zhang, Y., Zheng, Z., & Gong, C. (2022). Cattle face recognition based on a Two-Branch convolutional neural network. Computers and Electronics in Agriculture, 196, 106871. https://doi.org/10.1016/j.compag.2022.106871
  • Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Sun, Z., & Li, C. (2020). Livestock classification and counting in quadcopter aerial images using Mask R-CNN. International Journal of Remote Sensing, 41(21), 8121–8142. https://doi.org/10.1080/01431161.2020.1734245
  • Xu, B., Wang, W., Guo, L., Chen, G., Wang, Y., Zhang, W., & Li, Y. (2021). Evaluation of deep learning for automatic multi-view face detection in cattle. Agriculture, 11(11), 1062. https://doi.org/10.3390/agriculture11111062
  • Yukun, S., Pengju, H., Yujie, W., Ziqi, C., Yang, L., Baisheng, D., ... & Yonggen, Z. (2019). Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. Journal of dairy science, 102(11), 10140-10151. https://doi.org/10.3168/jds.2018-16164
There are 46 citations in total.

Details

Primary Language English
Subjects Animal Biotechnology in Agriculture
Journal Section Research Article
Authors

Cihan Çakmakçı 0000-0001-6512-9268

Murat Turan 0000-0001-9286-3046

Yusuf Çakmakçı 0000-0002-5136-9102

Priscila Assis Ferraz 0000-0002-9129-1047

Fırat Bülbüller 0000-0003-1062-5103

Selma Dalga 0000-0001-5950-2337

Bayram Olcar 0009-0004-6531-5895

Ahmet Fatih Demirel 0000-0002-7905-5850

Harun Hurma 0000-0003-1845-3940

Cristiane Titto 0000-0003-0205-227X

Submission Date October 11, 2025
Acceptance Date November 25, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Çakmakçı, C., Turan, M., Çakmakçı, Y., … Ferraz, P. A. (2025). Morphological Phenotyping for Cattle Breeds Classification from Unmanned Aerial Vehicle Imagery via Computer Vision and Deep Learning. International Journal of Agriculture Environment and Food Sciences, 9(Special), 82-91. https://doi.org/10.31015/2025.si.16

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27