Research Article
BibTex RIS Cite

Evaluation of the Thermal Effects of Urban Agricultural Areas on Surrounding Cultural Settlements: The Case of Dörtyol Citrus Orchard

Year 2025, Volume: 9 Issue: Special, 131 - 141, 28.12.2025
https://doi.org/10.31015/2025.si.21

Abstract

This study sought to explore and assess the thermal effects of urban agricultural zones on adjacent urban and rural areas, utilizing remote sensing data, with a citrus orchard in the Dörtyol district of Hatay province as a case study. NDVI and LST maps were generated with cloud-free Landsat 8 OLI/TIRS satellite data from August 19, 2024. The CORINE 2018 land cover data was utilized to delineate the boundaries of urban and rural communities. The research was carried out within a buffer zone created from the perimeter of the urban agriculture region. The results indicate that the mean NDVI value of the urban agricultural zone (0.34 ± 0.05) is markedly greater than that of the urban settlement (0.14 ± 0.07) and displays vegetation traits akin to those of the rural settlement (0.28 ± 0.09). LST investigations indicated that the urban settlement exhibited the greatest average surface temperature (43.83 ± 0.93 °C), succeeded by the urban agricultural area (42.68 ± 0.59 °C), and the rural settlement (42.44 ± 0.85 °C). The urban agricultural zone exhibited average land surface temperature (LST) values that were 1.15 °C lower and maximum temperatures that were 3.33 °C lower than those of the adjacent urban settlement. Transect-based correlation studies demonstrated that the correlations between NDVI and LST were substantial and negative (p < 0.001) across all land use categories. The correlation coefficients were determined to be -0.65 in the urban settlement, -0.77 in the urban agricultural area, and -0.84 in the rural settlement. LST values were found to decrease with increasing plant density and continuity, but LST values rose with heightened impervious surface pressure. Consequently, it was concluded that the urban agricultural zone displays thermal properties akin to rural areas, yet had the capacity to exert a considerable cooling influence on adjacent metropolitan environments. Moreover, it was shown that urban agriculture transcends conventional production, serving as a strategic instrument for delivering ecosystem services and bolstering urban climate resilience. Incorporating urban agricultural zones into sustainable urban design and climate adaption techniques can substantially alleviate the urban heat island effect and enhance urban thermal comfort.

References

  • Albaladejo-García, J. A., Alcon, F., & Martínez-Paz, J. M. (2020). The Irrigation Cooling Effect as a Climate Regulation Service of Agroecosystems. Water, 12(6), 1553. https://doi.org/10.3390/w12061553
  • Anandababu, D., Purushothaman, B.M., & Suresh, B.S. (2018). Estimation of land surface temperature using Landsat 8 data. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2), 177-186.
  • Aram, F., García, E. H., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01339
  • Ardahanlıoğlu, Z. R. (2024). Kayaköy-Hisarönü (Fethiye) ve Yakın Çevresinde Arazi Kullanımı/Arazi Örtüsü ile Arazi Yüzey Sıcaklığının Değerlendirilmesi Üzerine Bir Araştırma. Academıc Socıal Resources Journal, 8(54), 4013-4022. http://dx.doi.org/10.29228/ASRJOURNAL.73007
  • Artis, D.A., & Carnahan, W.H. (1982). Survey of Emissivity Variability in Thermography of Urban Areas, Remote Sensing of Environment. 12(4), 313-329. https://doi.org/10.1016/0034-4257(82)90043-8
  • Aslan, N., & Koc-San, D. (2021). The Use of Land Cover Indices for Rapid Surface Urban Heat Island Detection from Multi-Temporal Landsat Imageries. ISPRS International Journal of Geo-Information, 10(6), 416. https://doi.org/10.3390/ijgi10060416
  • Aydoğdu, R., & Koç, C. (2023). Hevsel Bahçeleri’nin kentsel tarım alanı olarak değerlendirilmesi. Çomü Ziraat Fakültesi Dergisi, 11(2), 212-228. https://doi.org/10.33202/comuagri.1331382
  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote sensing of Environment, 62(3), 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  • Cengiz, S., & Oğuz, D. (2018). Kentsel Peyzaj Deseninin Geçiş Analizleri: Ankara Kenti Örneği. TÜCAUM 30. Yıl Uluslararası Coğrafya Sempozyumu, 3-6 Ekim 2018, Ankara, 1171-1184.
  • Chen, L., & Dirmeyer, P. A. (2019). Global observed and modelled impacts of irrigation on surface temperature. International Journal of Climatology, 39(5), 2587-2600. https://doi.org/10.1002/joc.5973
  • Cinar, I., Ardahanlıoğlu, Z. R., & Toy, S. (2024). Land use/land cover changes in a Mediterranean summer tourism destination in Turkey. Sustainability, 16(4), 1480. https://doi.org/10.3390/su16041480
  • Clinton, N., Stuhlmacher, M., Miles, A., Uludere Aragon, N., Wagner, M., Georgescu, M., ... & Gong, P. (2018). A global geospatial ecosystem services estimate of urban agriculture. Earth's Future, 6(1), 40-60. https://doi.org/10.1002/2017EF000536
  • Copernicus, (2025). Corine Land Cover (CLC) 2018, Version 2020_20u1. https://land.copernicus.eu/en/products/corine-land-cover Accessed Date: 16.10.2025
  • Cui, Y., Xiao, X., Doughty, R. B., Qin, Y., Liu, S., Li, N., ... & Dong, J. (2019). The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains. Frontiers of Earth Science, 13(2), 290-302. https://doi.org/10.1007/s11707-018-0729-5
  • Çeliktopuz, E. (2024). Forecasting some climate parameters of Türkiye using the SSP3-7.0 scenario for the years 2040–2059. International Journal of Agriculture Environment and Food Sciences, 8(1), 62-71.
  • Çopuroğlu, M. A. (2017). Büyükşehir belediye sınırları içinde yer alan kırsal yerleşmelerin sorunları üzerine bir deneme. Journal of Architectural Sciences and Applications, 2(2), 18-32. https://doi.org/10.30785/mbud.345017
  • Çoşlu, M., Karakuş N., Selim S., & Sönmez N.K. (2021). Evaluation Of The Relationship Between Land Use And Land Surface Temperature In Manavgat Sub-Basin. Planning, In Altuntaş, A., (Ed), Design And Managment In Landscape Architecture, (pp.3-28), IKSAD International Publishing House.
  • Dağlı, D., & Çağlıyan, A. (2021). Kentsel Gelişim ve Dönüşüm Sürecinin Belirlenmesi: Diyarbakir Örneği. lnternational Journal of Geography and Geography Education, (43), 212-234. https://doi.org/10.32003/igge.819481
  • de Zeeuw, H., Guendel, S., & Waibel, H. (2000). The integration of agriculture in urban policies. In: Bakker, N., Dubbeling, M., Gündel, S., Sabel-Koschella, U., de Zeeuw, H., (Eds) Growing cities, Growing Food. (pp 161–180), Dtsch Stift int Entw, Feldafing.
  • Du, H., Wang, D., Wang, Y., Zhao, X., Qin, F., Jiang, H., & Cai, Y. (2016). Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Science of the Total Environment, 571, 461-470. https://doi.org/10.1016/j.scitotenv.2016.07.012
  • Duan, X., Haseeb, M., Tahir, Z., Mahmood, S. A., Tariq, A., Jamil, A., ... & Abdullah-Al-Wadud, M. (2025). A geospatial and statistical analysis of land surface temperature in response to land use land cover changes and urban heat island dynamics. Scientific Reports, 15(1), 4943. https://doi.org/10.1038/s41598-025-89167-x
  • Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349-359. https://doi.org/10.1016/j.scitotenv.2016.10.195
  • Fei, S., Wu, R., Liu, H., Yang, F., & Wang, N. (2025). Technological Innovations in Urban and Peri-Urban Agriculture: Pathways to Sustainable Food Systems in Metropolises. Horticulturae, 11(2), 212. https://doi.org/10.3390/horticulturae11020212
  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760. https://doi.org/10.1126/science.1150195
  • Grimmond, S. U. E. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88. https://www.jstor.org/stable/30113496
  • Guha, S., Govil, H. (2021). An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23, 1944–1963. https://doi.org/10.1007/s10668-020-00657-6
  • Heinl, M., Hammerle, A., Tappeiner, U., & Leitinger, G. (2015). Determinants of urban–rural land surface temperature differences–A landscape scale perspective. Landscape and Urban Planning, 134, 33-42. https://doi.org/10.1016/j.landurbplan.2014.10.003
  • Jimenez-Munoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristobal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11(10), 1840-1843. https://doi.org/10.1109/LGRS.2014.2312032
  • Kanbak, A. G. (2018). Endüstriyel Tarımın Ekolojik Krizine Karşı Kentsel Tarım Bir Çözüm Olabilir Mi?. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 18(3), 193-204. https://doi.org/10.18037/ausbd.552556
  • Karakuş, N., & Kahraman, E. (2025). Uzaktan Algılama Verileriyle Arazi Kullanımı/Arazi Örtüsünün Arazi Yüzey Sıcaklığı Üzerindeki Etkisinin Değerlendirilmesi: Antalya İli Konyaaltı İlçesi Örneği. Journal of Anatolian Environmental and Animal Sciences, 10(6), 1062-1069.
  • Lin, B. B., Philpott, S. M., & Jha, S. (2015). The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic and applied ecology, 16(3), 189-201. https://doi.org/10.1016/j.baae.2015.01.005
  • Liu, X., Zheng, L., & Wang, Y. (2025). Revealing the roles of climate, urban form, and vegetation greening in shaping the land surface temperature of urban agglomerations in the Yangtze River economic belt of China. Journal of Environmental Management, 377, 124602. DOI: 10.1016/j.jenvman.2025.124602
  • Lovell, S. T. (2010). Multifunctional Urban Agriculture for Sustainable Land Use Planning in the United States. Sustainability, 2(8), 2499-2522. https://doi.org/10.3390/su2082499
  • Lovell, S. T., DeSantis, S. R., Nathan, C. A., Olson, M. B., Méndez, V. E., Kominami, H. C., ... & Morris, W. B. (2010). Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agricultural Systems, 103(5), 327-341. https://doi.org/10.1016/j.agsy.2010.03.003
  • Martin, P., Baudouin, Y., & Gachon, P. (2015). An alternative method to characterize the surface urban heat island. International Journal of Biometeorology, 59(7), 849 861. https://doi.org/10.1007/s00484-014-0902-9
  • Medina-Fernández, S. L., Núñez, J. M., Barrera-Alarcón, I., & Perez-DeLaMora, D. A. (2023). Surface Urban Heat Island and Thermal Profiles Using Digital Image Analysis of Cities in the El Bajío Industrial Corridor, Mexico, in 2020. Earth, 4(1), 93-150. https://doi.org/10.3390/earth4010007
  • Mendiratta, P., & Gedam, S. (2018). Assessment of urban growth dynamics in Mumbai Metropolitan Region, India using object-based image analysis for medium-resolution data. Applied Geography, 98, 110-120. https://doi.org/10.1016/j.apgeog.2018.05.017
  • Mohammad, P., & Goswami, A. (2022). Spatial variation of surface urban heat island magnitude along the urban-rural gradient of four rapidly growing Indian cities. Geocarto International, 37(15), 4269-4291.
  • Morsy, S., & Hadı, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272-282. DOI: 10.26833/ijeg.978961
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24. https://patarnott.com/pdf/Oake1982_UHI.pdf
  • Olgun, R., Karakuş, N., Selim, S., Yilmaz, T., Erdoğan, R., Aklıbaşında, M., Dönmez, B., Çakır, M., & Ardahanlıoğlu, Z. R. (2025). Impacts of Landscape Composition on Land Surface Temperature in Expanding Desert Cities: A Case Study in Arizona, USA. Land, 14(6), 1274. https://doi.org/10.3390/land14061274
  • Rahimi, E., Dong, P., & Jung, C. (2025). Global NDVI-LST correlation: Temporal and spatial patterns from 2000 to 2024. Environments, 12(2), 67. https://doi.org/10.3390/environments12020067
  • Rahman, A., Kumar, Y., Fazal, S., & Bhaskaran, S. (2011). Urbanization and quality of urban environment using remote sensing and GIS techniques in East Delhi-India. Journal of Geographic Information System, 3(1), 62-84. http://doi.org/10.4236/jgis.2011.31005
  • Rana, G., & Ferrara, R. M. (2019). Air cooling by tree transpiration: A case study of Olea europaea, Citrus sinensis and Pinus pinea in Mediterranean town. Urban Climate, 29, 100507. https://doi.org/10.1016/j.uclim.2019.100507
  • Rouse Jr, J.W., Haas, R.H., Schell, J.A., & Deering, D.W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. NASA-CR-132982).
  • Selim, S., Eyileten, B., & Karakuş, N. (2023). Investigation of green space cooling potential on land surface temperature in Antalya city of Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 107-114. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-107-2023
  • Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083–16088. https://doi.org/10.1073/pnas.1211658109
  • Shahfahad, Talukdar, S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2022). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 24(3), 3762-3790. https://doi.org/10.1007/s10668-021-01587-7
  • Sithole, K., & Odindi, J. (2015). Determination of Urban Thermal Characteristics on an Urban/Rural Land Cover Gradient Using Remotely Sensed Data. South African Journal of Geomatics, 4(4), 384–396. https://doi.org/10.4314/sajg.v4i4.3
  • Skelhorn, C., Lindley, S., & Levermore, G. (2014). The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129-140. https://doi.org/10.1016/j.landurbplan.2013.09.012
  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440. https://doi.org/10.1016/j.rse.2004.02.003
  • Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J.,Plaza, A. & Martínez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE transactions on geoscience and remote sensing, 46(2), 316-327. https://doi.org/10.1109/TGRS.2007.904834
  • Suna, Ö. (2022). Kentsel-kırsal arayüzde tarım olgusu ve kentsel tarım. Yüksek Lisans Tezi, Mimar Sinan Güzel Sanatlar Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, İstanbul, 147s.
  • Şekertekin, A., & Marangoz, A. M. (2019). Zonguldak metropolitan alanındaki arazi kullanımı arazi örtüsünün yer yüzey sıcaklığına etkisi. Geomatik, 4(2), 101-111.
  • Tandoğan, O., & Özdamar, E. G. (2022). Kentsel tarımın tarihsel süreç içinde değişimi. İdealkent, 13(35), 221-251. https://doi.org/10.31198/idealkent.952387
  • Thebo, A. L., Drechsel, P., & Lambin, E. F. (2014). Global assessment of urban and peri-urban agriculture: Irrigated and rainfed croplands. Environmental Research Letters, 9(11), 114002. https://doi.org/10.1088/1748-9326/9/11/114002
  • UN, (2018). World Urbanization Prospects: The 2018 Revision. Department of Economic and Social Affairs, Population Division, United Nations. https://population.un.org/wup/
  • UN, (2024). World Population Prospects 2024. Department of Economic and Social Affairs, Population Division, United Nations. https://www.un.org/development/desa/pd/world-population-prospects-2024
  • USGS (2024). Using the USGS Landsat Level-1 Data Product. Retrieved November 18, 2024, from https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product
  • Ünsal, Ö., & Avci, V. (2023). Yer yüzeyi sıcaklıkları ile kentsel arazi kullanımı arasındaki ilişkinin belirlenmesi: Şanlıurfa, Diyarbakır ve Mardin örneği. Türk Uzaktan Algılama ve CBS Dergisi, 4(2), 125-150. https://doi.org/10.48123/rsgis.1195902
  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  • Yang, Q., Huang, X., & Tang, Q. (2020). Irrigation cooling effect on land surface temperature across China based on satellite observations. Science of the total environment, 705, 135984. https://doi.org/10.1016/j.scitotenv.2019.135984
  • Yenigül, S. B. (2016). Büyükşehirlerde tarımsal alanların korunmasında kentsel tarım ve yerel yönetimlerin rolü. Megaron, 11(2), 291-299.
  • Yücel, C. (2020). 20. yüzyıl Dünya ve Türkiye kentleşmesi üzerine bir derleme. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (50), 200-230. https://doi.org/10.48070/erusosbilder.762929
  • Zengin, M., Kopar, I., & Karahan, F. (2010). Determination of bioclimatic comfort in Erzurum–Rize expressway corridor using GIS. Building and Environment, 45(1), 158-164.
  • Zengin, M., Yılmaz, S., Mutlu, B., 2019. Analysis of Atatürk University Thermal Camera Images in Terms of Spatial Thermal Comfort, Atatürk University Journal of Agriculture, 50(3), 239-247
  • Zezza, A., & Tasciotti, L. (2010). Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries. Food policy, 35(4), 265-273. https://doi.org/10.1016/j.foodpol.2010.04.007
  • Zhang, M., Cao, Y., Zhang, Z., Zhang, X., Liu, L., Chen, H., ... & Liu, X. (2024). Spatiotemporal variation of land surface temperature and its driving factors in Xinjiang, China. Journal of Arid Land, 16(3), 373-395. https://doi.org/10.1007/s40333-024-0072-5
  • Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15), 7575-7580. https://doi.org/10.1073/pnas.1817561116
There are 69 citations in total.

Details

Primary Language English
Subjects Agro-Ecosystem Function and Prediction
Journal Section Research Article
Authors

Nihat Karakuş 0000-0002-6924-1879

Ahmet Koç 0000-0001-6932-6680

Submission Date November 14, 2025
Acceptance Date December 22, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Karakuş, N., & Koç, A. (2025). Evaluation of the Thermal Effects of Urban Agricultural Areas on Surrounding Cultural Settlements: The Case of Dörtyol Citrus Orchard. International Journal of Agriculture Environment and Food Sciences, 9(Special), 131-141. https://doi.org/10.31015/2025.si.21

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27