Enological Potential of the Autochthonous Vitis vinifera L. cv. ‘Karamenüş’ under Winter Pruning Strategies
Year 2025,
Volume: 9 Issue: 4, 1224 - 1240, 26.12.2025
Tezcan Alço
,
Serkan Candar
,
Mümtaz Ekiz
,
Gamze Uysal Seçkin
,
Tamer Uysal
,
Saadet Sıcakyüz
,
Elman Bahar
,
Ilknur Korkutal
,
Mehmet Gülcü
Abstract
This research investigated the effects of cane and spure pruning methods on berry morphology and on the berry and wine composition of Vitis vinifera L. cv. ‘Karamenüş’. The experiment was carried out during the 2017–2018 growing seasons at Tekirdağ Viticulture Research Institute (TVRI), Türkiye. ‘Karamenüş’ grapevines, grafted onto 140Ru rootstock, were originally planted in 2004. In the study, yield components, berry morphology, ripening indices, polyphenolic compounds, organic acids, nitrogen content, physicochemical and sensory properties of the wine were analyzed. The findings demonstrated that pruning type did not significantly affect either yield or berry size. However, cane pruning promoted higher accumulation of anthocyanins (up to 975.83 mg kg⁻¹ in 2017) and tannins (up to 3.10 g kg⁻¹), while spur pruning favored the concentration of total phenolics (up to 2610.00 mg kg⁻¹ in 2017). Yearly variations associated with precipitation influenced grape composition, lowering polyphenolic levels in 2018 compared to 2017. Wines produced from both pruning systems exhibited balanced and distinctive profiles. Cane-pruned wines contained higher alcohol and anthocyanin levels, whereas spur-pruned wines displayed greater acidity and phenolics. Sensory evaluations according to the OIV 20-point system revealed that the wines reached a high quality level despite minor differences (17.15–17.61 points). Overall, the results emphasize the role of pruning in optimizing polyphenolic composition under variable climatic conditions and underline the importance of adaptive viticulture strategies for premium wine production from this autochthonous cultivar.
References
-
Almanza-Merchán, P.J., Fischer, G., & Cely, R.G. (2014). The importance of pruning to the quality of wine grape fruits (Vitis vinifera L.) cultivated under high-altitude tropical conditions. Agronomía Colombiana, 32 (3), 341—348. https://doi.org/10.15446/agron.colomb.v32n3.47048
-
Bahar, E., Carbonneau, A., & Korkutal, İ. (2017). Vine and berry responses to severe water stress in different stages in cv. Syrah (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty, 14, 62—70.
-
Bahar, E., Korkutal, İ., Kurt, C. (2011). Water deficit effect on different phenological growth stages in grape berry growing, development and quality. Trakya University Journal of Natural Sciences, 12, 23—34.
-
Baroň, M. (2011). Effect of rootstock on levels of ammonium ions and yeast assimilable nitrogen in musts of the grapevine varieties 'Weißer Riesling' and 'Grüner Veltliner'. Mitteilungen Klosterneuburg, 61, 228—235.
-
Bell, S.J., & Henschke, P.A. (2005). Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape and Wine Research, 11 (3), 242—295. https://doi.org/10.1111/j.1755-0238.2005.tb00028.x
-
Blouin, J., & Guimberteau, G. (2000). Maturation et maturité des raisins. Féret, Bordeaux.
-
Bokulich, N.A., Collins, T.S., Masarweh, C., Allen, G., Heymann, H., Ebeler, S.E., & Mills, D.A. (2016). Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio, 7, Article e00631-16. https://doi.org/10.1128/mbio.00631-16
-
Botelho, M., Cruz, A., Ricardo-da-Silva, J., de Castro, R., & Ribeiro, H. (2020a). Mechanical pruning and soil fertilization with distinct organic amendments in vineyards of Syrah: Effects on vegetative and reproductive growth. Agronomy, 10 (8), 1090. https://doi.org/10.3390/agronomy10081090
-
Botelho, M., Cruz, A., Silva, E.B., Mexia, A., Ricardo-da-Silva, J., Castro, R., & Ribeiro, H. (2020b). Mechanical pruning in non-irrigated vineyards: Effects on yield and grape composition of cultivar 'Syrah' (Vitis vinifera L.). Acta Horticulturae, 1276, 125—130. https://doi.org/10.17660/ActaHortic.2020.1276.18
-
Bouloumpasi, E., Skendi, A., & Soufleros, E.H. (2023). Survey on yeast assimilable nitrogen status of musts from native and international grape varieties: Effect of variety and climate. Fermentation, 9 (8), 773. https://doi.org/10.3390/fermentation9080773
-
Bravdo, B., Hepner, Y., Loinger, C., Cohen, S., & Tabacman, H. (1985). Effect of crop level and crop load on growth, yield, must and wine composition, and quality of Cabernet Sauvignon. American Journal of Enology and Viticulture, 36, 125—131. https://doi.org/10.5344/ajev.1985.36.2.125
-
Candar, S. (2024). Understanding the impact of artificial stress on the morphological characteristics of cv. ‘Merlot’ berry and cluster. Applied Fruit Science, 66, 257-267. https://doi.org/10.1007/s10341-023-01002-7
-
Candar, S., Alço, T., Ekiz, M., & Korkutal, İ. (2020). The effect of pruning type and abiotic factors on physiological activities in some local wine grapes selected from national collection vineyard. Journal of Agricultural Faculty of Ege University, 57 (2), 173—184. https://doi.org/10.20289/zfdergi.602806
-
Candar, S., Alço, T., Uysal, T., & Ekiz, M. (2019a). Determination of bioclimatic demands and maturity indicators in wine grape varieties of Karamenüş and Yayla (Vitis vinifera L.). International Journal of Agriculture and Wildlife Science, 5 (2), 231—239. https://doi.org/10.24180/ijaws.597206
-
Candar, S., Alço, T., Uysal, T., Uysal, G., Ahmet, T., & Eryilmaz, I. (2023c). Oenological properties and terroir characteristics of an autochthonous grape cultivar: Ada Karası (Vitis vinifera L.). European Food Research and Technology, 249, 2595—2610. https://doi.org/10.1007/s00217-023-04317-7
-
Candar, S., Bahar, E., Korkutal, İ., & Aktaş, F.B. (2023b). Defoliation and water leaf potential effects on oenological properties of Merlot (Vitis vinifera L.) grape must. Acta Scientiarum Polonorum Hortorum Cultus, 22 (5), 99—114. https://doi.org/10.24326/asphc.2023.5051
-
Candar, S., Bahar, E., Korkutal, İ., & Alço, T. (2019b). The effects of different green pruning practices on oenological properties of Merlot (Vitis vinifera L.) grape juice. Mediterranean Agricultural Sciences, 32 (2) , 121—127. https://doi.org/10.29136/mediterranean.517920
-
Candar, S., Seçkin, G.U., & Kizildeniz, T. (2023a). Variations of chlorophyll, proline, and abscisic acid (ABA) contents in grapevines (Vitis vinifera L.) under water deficit conditions. Erwerbs-Obstbau, 65, 1965—1977. https://doi.org/10.1007/s10341-023-00875-y
-
Carbonneau, A., Bahar, E., Candar, S., & Alço, T. (2021). Le potentiel oenologique de cépages Turcs. Group of International Experts of Vitivinicultural Systems for CoOperation. Retrieved from https://www.giesco.org/documents/files/le-potentiel-oenologique-de-cepages-turcs-sc-def.pdf by December 25, 2024. https://doi.org/10.13140/RG.2.2.19399.21921
-
Castellarin, S.D., Matthews, M.A., Di Gaspero, G., & Gambetta, G.A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227, 101—112. https://doi.org/10.1007/s00425-007-0598-8
-
Cataldo, E., Eichmeier, A., & Mattii, G.B. (2023). Effects of global warming on grapevine berries phenolic compounds—A review. Agronomy, 13 (9), Article 2192. https://doi.org/10.3390/agronomy13092192
-
Chen, Y., Liang, Z., Krstic, M., Clingeleffer, P., Howell, K., Chen, D., & Zhang, P. (2023). The influences of rootstock on the performance of Pinot Noir (Vitis vinifera L.): Berry and wine composition. Australian Journal of Grape and Wine Research, 2024 (1) , 7586202. https://doi.org/10.1155/2024/7586202
-
Cherviak, S.N., Boyko, V.A., Oleinikova, V.A., & Romanov, A.V. (2024). Phenolic complex of Bastardo Magarachsky grape cultivar and factors determining its formation. Food Systems, 7 (4), 508—514. https://doi.org/10.21323/2618-9771-2024-7-4-508-514
-
Clingeleffer, P.R. (2010). Plant management research: Status and what it can offer to address challenges and limitations. Australian Journal of Grape and Wine Research, 16, 25—32. https://doi.org/10.1111/j.1755-0238.2009.00075.x
-
Cortell, J.M., Halbleib, M., Gallagher, A.V., Righetti, T.L., & Kennedy, J.A. (2007). Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Journal of Agricultural and Food Chemistry, 55, 6585—6595. https://doi.org/10.1021/jf070196n
-
Cortell, J.M., Sivertsen, H.K., Kennedy, J.A., & Heymann, H. (2008). Influence of vine vigor on pinot noir fruit composition, wine chemical analysis, and wine sensory attributes. American Journal of Enology and Viticulture, 59, 1—10. https://doi.org/10.5344/ajev.2008.59.1.1
-
De La Hera Orts, M.L., Martínez-Cutillas, A., López-Roca, J.M., & Gómez-Plaza, E. (2005). Effect of moderate irrigation on grape composition during ripening. Spanish Journal of Agricultural Research, 3 (3), 352—361.
-
Deloire, A., Carbonneau, A., Wang, Z., & Ojeda, H. (2004). Vine and water, a short review. Journal International des Sciences de la Vigne et du Vin, 38 (1), 1—13.
-
Dong, Y., Duan, S., Xia, Q., Liang, Z., Dong, X., Margaryan, K., Musayev, M., Goryslavets, S., Zdunić, G., & Bert, P.F. (2023). Dual domestications and origin of traits in grapevine evolution. Science, 379, 892—901. https://doi.org/10.1126/science.add8655
-
Downey, M.O., Dokoozlian, N.K., & Krstic, M.P. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 57, 257—268. https://doi.org/10.5344/ajev.2006.57.3.257
-
Dry, P.R. (2000). Canopy management for fruitfulness. Australian Journal of Grape and Wine Research, 6, 109–115.
-
Epee, P.T.M., Schelezki, O., Trought, M.C.T., Werner, A., Hofmann, R.W., Almond, P., & Parker, A. (2022). Effects of cane- and spur-retained node numbers on the pre-flowering vegetative growth of cane-pruned Sauvignon blanc. OENO One, 56 (4), 157—171. https://doi.org/10.20870/oeno-one.2022.56.4.5530
-
Fang, F., Li, J.M., Zhang, P., Tang, K., Wang, W., & Pan, Q.H. (2008). Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Research International, 41 (1), 53—60. https://doi.org/10.1016/j.foodres.2007.09.004
-
Fanizza, G., Colonna, G., Resta, P., & Ferrara, G. (1999). The effect of the number of RAPD markers on the evaluation of genotypic distances in Vitis vinifera. Euphytica, 107, 45—50. https://doi.org/10.1023/A:1003535916622
-
Ferrara, G., Gallotta, A., Pacucci, C., Matarrese, A.M.S., Mazzeo, A., Giancaspro, A., Gadaleta, A., Piazzolla, F., & Colelli, G. (2017). The table grape 'Victoria' with a long shaped berry: A potential mutation with attractive characteristics for consumers. Journal of the Science of Food and Agriculture, 97 (15), 5398—5405. https://doi.org/10.1002/jsfa.8429
-
Giusti, M.M., & Wrolstad, R.E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 00 (1) 1, F1.2.1-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00
-
Gump, B.H., Zoecklein, B.W., & Fugelsang, K.C. (2000), Prediction of pre-fermentation nutritional status of grape juice – The formol method. In: J. F. Spencer & A. L. Ragout-Spencer (Eds.), Food microbiology protocols, Vol 14, Humana Press, Totowa, NJ. pp. 283-296.
-
Gutiérrez-Gamboa, G., Zheng, W., & Martínez de Toda, F. (2021). Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, Article 109946. https://doi.org/10.1016/j.foodres.2020.109946
-
Hidalgo, T.J. (2006), Sistemas de evaluación del potencial enológico. Mundi-Prensa, Madrid.
-
Hilbert, G., Soyer, J.P., Molot, C., Giraudon, J., Milin, S., & Gaudillère, J.P. (2003). Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis, 42, 69—76.
-
Howell, G.S. (2001). Sustainable grape productivity and the growth–yield relationship. American Journal of Enology and Viticulture, 52, 165—174.
-
Hunter, J.J., Ruffner, H.P., Volschenk, C.G., & Le Roux, D.J. (1995). Partial defoliation of Vitis vinifera L. cv Cabernet Sauvignon/99 Richter: Effect on root growth, canopy efficiency, grape composition and wine quality. American Journal of Enology and Viticulture, 46, 306—314.
-
INRA. (2007). Determination d’anthocyanes en echantillons de raisin. Mode operatiore. Ref: MO-LAB-23. UE Pech Rouge, Montpellier.
-
Kacar, B., & İnal, A. (2010). Bitki analizleri (2nd ed.). Nobel Yayın, Ankara.
-
Keller, M., & Hrazdina, G. (1998). Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. American Journal of Enology and Viticulture, 49, 341—349.
-
Kliewer, W.M., & Weaver, R.J. (1971). Effect of crop level and leaf area on growth, composition, and coloration of ‘Tokay’ grapes. American Journal of Enology and Viticulture, 22, 172—177. https://doi.org/10.5344/ajev.1971.22.3.172
-
Korkutal, İ., Bahar, E. (2013). Influence of different soil tillage and leaf removal treatments on yield, cluster and berry characteristics in cv. Syrah (Vitis vinifera L.). Bulgarian Journal of Agricultural Science, 19 (4), 652—663.
-
Korkutal, İ., Bahar, E., & Bayram, S. (2017). Different soil tillage and leaf removals effects on water stress, berry and cluster properties of cv. Syrah. Journal of Agricultural Faculty of Ege University, 54 (4), 397—407. https://doi.org/10.20289/zfdergi.386422
-
Korkutal, İ., Bahar, E., & Carbonneau, A. (2019). Early water stress effects on pollen viability, berry set and embryo development in cv. ‘Syrah’ (Vitis vinifera L.). Horticultural Science Prague, 46 (4), 215—223. https://doi.org/10.17221/110/2018-HORTSCI
-
Korkutal, İ., Bahar, E., & Güvemli Dündar, D. (2020). Determination the effects of antitranspirant application on the grape berry and cluster characteristics in veraison and post-veraison period. Journal of Agricultural Faculty of Ege University, 57 (1), 83—93. https://doi.org/10.20289/zfdergi.594224
-
Korkutal, İ., Bahar, E., & Zinni, A. (2021a). Determination the effects of leaf removal and topping at different times on the grape berry. Journal of the Institute of Science and Technology, 11 (1), 1—9. https://doi.org/10.21597/jist.785219
-
Korkutal, İ., Bahar, E., & Zinni, A. (2021b). Determination the effects of leaf removal and topping at different times on the grape cluster. Adnan Menderes University Journal of Agricultural Sciences, 18 (2), 157—164. https://doi.org/10.25308/aduziraat.837241
-
Lacroux, F., Tregoat, O., Leeuwen, C., Pons, A., Tominaga, T., Lavigne-Cruège, V., & Dubourdieu, D. (2008). Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon Blanc. Journal International des Sciences de la Vigne et du Vin, 42 (3), 125—132.
-
López-Miranda, S., Yuste, J., & Lissarrague, J.R. (2005). Effects of the pruning system on physiological activity, leaf area and source–sink ratio on Vitis vinifera L. ‘Verdejo’. Acta Horticulturae, 689, 233—238. https://doi.org/10.17660/ActaHortic.2005.689.26
-
Lorenz, D., Eichhorn, K., Bleiholder, H., Klose, R., & Meier, U. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera) - codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1 (2), 100—110. https://doi.org/10.1111/j.1755-0238.1995.tb00085.x
-
Martino Forino, L., Picariello, L., Rinaldi, A., Moio, L., & Gambuti, A. (2020). How must pH affects the level of red wine phenols. LWT - Food Science and Technology, 129, Article 109546. https://doi.org/10.1016/j.lwt.2020.109546
-
Mateus, N., Proenca, S., Riberio, P., Machado, J.M., & De Freitas, V. (2001). Grape and wine polyphenolic composition of red Vitis vinifera varieties concerning vineyard altitude. Ciência e Tecnologia de Alimentos, 3 (2), 102—110.
-
Matthews, M.A., & Nuzzo, V. (2007). Berry size and yield paradigms on grapes and wines quality. Acta Horticulturae, 745, 423—436. https://doi.org/10.17660/ActaHortic.2007.754.56
-
Miele, A., & Rizzon, L.A. (2017). Rootstock-scion interaction: 1. Effect on the yield components of Cabernet Sauvignon grapevine. Revista Brasileira de Fruticultura, 39 (1), Article e-280. https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452017000101003
-
Montealegre, R., Romero Peces, R., Chacón Vozmediano, J.L., Martínez Gascueña, J., & García Romero, E. (2006). Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. Journal of Food Composition and Analysis, 19 (6-7), 687—693.
-
Mori, K., Sugaya, S., & Gemma, H. (2005). Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae, 105 (3), 319—330.
-
Mullins, M., Bouquet, A., & Williams, L.E. (2007). Biology of the grapevine. Cambridge University Press, Cambridge.
-
Munoz, J.R., Stauch, S.J., Wootten, J., Kitchen, M., Abreu, M., Rodriguez, C.J., Casassa, L.F., Wolpert, J.A., & Dodson Peterson, J.C. (2023). Effect of rootstock on vineyard establishment using green-growing benchgrafts. Agronomy, 13 (6), 1586. https://doi.org/10.3390/agronomy13061586
-
OIV. (2025). Compendium of international methods of wine and must analysis. Retrieved from https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis by December 25, 2024.
-
Pelsy, F. (2010). Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity, 104, 331—340.
-
Peynaud, É. (1987). The taste of wine (M. Schuster, Trans.). Macdonald & Co., London. (Original work published 1983)
-
Poni, S., Bernizzoni, F., Civardi, S., & Libelli, N. (2009). Effects of pre-bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Australian Journal of Grape and Wine Research, 15 (2), 185—193. https://doi.org/10.1111/j.1755-0238.2008.00044.x
-
Poni, S., Gatti, M., Palliotti, A., Dai, Z., Duchêne, E., Truong, T.T., Ferrara, G., Matarrese, A.M.S., Gallotta, A., Bellincontro, A., Mencarelli, F., & Tombesi, S. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234, 445—462. https://doi.org/10.1016/j.scienta.2017.12.035
-
Reshi, Z.A., Ahmad, W., Lukatkin, A.S., & Javed, S.B. (2023). From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites, 13 (8), Article 895. https://doi.org/10.3390/metabo13080895
-
Reynolds, A.G., & Heuvel, J.E. (2009). Influence of grapevine training systems on vine growth and fruit composition: A review. American Journal of Enology and Viticulture, 60, 251—268.
-
Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., Walker, R.P., Famiani, F., & Castellarin, S.D. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario – A review. Frontiers in Plant Science, 12, 643258. https://doi.org/10.3389/fpls.2021.643258
-
Roby, G., & Matthews, M.A. (2004). Relative proportions of seed, skin and flesh, in ripe berries from Cabernet-Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Australian Journal of Grape and Wine Research, 10, 74—82.
-
Rodriguez-Lovelle, B., & Gaudillère, J.P. (2002). Carbon and nitrogen partitioning in either fruiting or non-fruiting grapevines: Effects of nitrogen limitation before and after veraison. Australian Journal of Grape and Wine Research, 8 (2), 86—94. https://doi.org/10.1111/j.1755-0238.2002.tb00216.x
-
Rouxinol, M.I., Martins, M.R., Barroso, J.M., & Rato, A.E. (2023). Wine grapes ripening: A review on climate effect and analytical approach to increase wine quality. Applied Biosciences, 2 (3), 347—372. https://doi.org/10.3390/applbiosci2030023
-
Soltekin, O., Güler, A., Teker, T., & Candemir, A. (2022). Combined Effects of Pruning and Crop Removal Levels on Yield, Quality, and Physiological Properties in ‘Merlot’ and ‘Cabernet Sauvignon’ Grapevines. Erwerbs-Obstbau 64, 129–140. https://doi.org/10.1007/s10341-022-00719-1
-
Soubeyrand, E., Basteau, C., Hilbert, G., Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38—49.
-
Spayd, S.E., Tarara, J.M., Mee, D.L., & Ferguson, J.C. (2011). Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53, 171—182.
-
Tarara, J.M., & Lee, J. (2012). An introduction to environmental influences on ripening in grapes: Focus on wine grapes and phenolics. USDA National Institute of Food and Agriculture Extension. Retrieved from http://articles.extension.org/pages/33025/an-introduction-to-environmental-influences-on-ripening-in-grapes:-focus-on-wine-grapes-and-phenolic by December 25, 2024.
-
Teker, T., & Altindisli, A. (2021). Excessive pruning levels in young grapevines (Vitis vinifera L. cv. Sultan 7) cause water loss in seedless cluster berries. International Journal of Fruit Science, 21 (1), 979—992. https://doi.org/10.1080/15538362.2021.1964416
-
Tomasi, N., Monte, R., Varanini, Z., Cesco, S., & Pinton, R. (2015). Induction of nitrate uptake in Sauvignon Blanc and Chardonnay grapevines depends on the scion and is affected by the rootstock. Australian Journal of Grape and Wine Research, 21 (2), 331—338. https://doi.org/10.1111/ajgw.12137
-
Torrea, D., Varela, C., Ugliano, M., Ancin-Azpilicueta, C., Leigh Francis, I., & Henschke, P.A. (2011). Comparison of inorganic and organic nitrogen supplementation of grape juice - Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chemistry, 127 (3), 1072—1083. https://doi.org/10.1016/j.foodchem.2011.01.092
-
Torres, N., Goicoechea, N., Morales, F., & Antolín, M.C. (2016). Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop and Pasture Science, 67 (9), 961—977.
-
Uysal, T., Ergönül, O., Yaşasın, A., & Polat, A. (2024). Characterization of Some Grape Genotypes in Tekirdağ Vineyard Genebank. Anadolu Journal of Aegean Agricultural Research Institute, 34 (Özel sayı), 26—35. https://doi.org/10.18615/anadolu.1394001
-
Verdenal, T., Dienes-Nagy, Á., Spangenberg, J.E., Zufferey, V., Spring, J.L., Viret, O., & Van Leeuwen, C. (2021). Understanding and managing nitrogen nutrition in grapevine: A review. OENO One, 55 (1), 1—43. https://doi.org/10.20870/oeno-one.2021.55.1.3866
-
Vilas Boas, A.C., Henrique, P.D.C., Lima, L.C.D.O., & Decarlos Neto, A. (2014). Antioxidant activity, anthocyanins and organic acids content of grape juices produced in Southwest of Minas Gerais, Brazil. Ciência e Agrotecnologia, 38 (5), 480—486.
-
Wang, X., Lesefko, S., De Bei, R., Fuentes, S., & Collins, C. (2020). Effects of canopy management practices on grapevine bud fruitfulness. OENO One, 54 (2), 313—325.
-
Waterhouse, A.L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6, 1—8. https://doi.org/10.1002/0471142913.fai0101s06
-
Wessner, L.F., & Kurtural, S.K. (2013). Pruning systems and canopy management practice interact on the yield and fruit composition of Syrah. American Journal of Enology and Viticulture, 64, 134—138. https://doi.org/10.5344/ajev.2012.12056
-
Yamane, T., & Shibayama, K. (2006). Effects of changes in the sensitivity to temperature on skin coloration in ‘Aki Queen’ grape berries. Journal of the Japanese Society for Horticultural Science, 75 (6), 458—462.
-
Yayla, F. (2008) Investigation of wine grape characteristics of varieties in the national grape collection vineyard: Final report. Tekirdağ Viticulture Research Institute Directorate. Retrieved from https://kutuphane.tarimorman.gov.tr/vufind/Record/1220399/Description#holdings by December 25, 2024.
-
Yilmaz, T., Ates, F., Turan, M., Hatterman-Valenti, H., & Kaya, O. (2024). Dynamics of sugars, organic acids, hormones, and antioxidants in grape varieties ‘Italia’ and ‘Bronx Seedless’ during berry development and ripening. Horticulturae, 10 (3), 229. https://doi.org/10.3390/horticulturae10030229
-
Zagoskina, N.V., Zubova, M.Y., Nechaeva, T.L., Kazantseva, V.V., Goncharuk, E.A., Katanskaya, V.M., Baranova, E.N., & Aksenova, M.A. (2023). Polyphenols in plants: Structure, biosynthesis, abiotic stress regulation, and practical applications (Review). International Journal of Molecular Sciences, 24 (18), 13874. https://doi.org/10.3390/ijms241813874