Review Article
BibTex RIS Cite

Machine Learning Approaches for Crop Water Requirement Prediction and Optimization

Year 2025, Volume: 9 Issue: Special, 293 - 306, 28.12.2025
https://doi.org/10.31015/2025.si.29

Abstract

This review provides insights into the use of machine learning (ML) techniques for predicting and scheduling crop water requirements (CWR) in agricultural water management. With climate change and increasingly demanding populations, precision irrigation is now more than ever an imperative for food security and sustainable agriculture. This paper provides a comparison of different ML models in estimating the CWR: Random Forests, Support Vector Machines, deep learning, and hybrid models. According to reviewed literature, prediction precision above 90% and water savings ranging from 30% to 50% were achieved with ML systems when compared to traditional methods. Hybrid models such as CNN-LSTM and SVM-DT combinations achieve better results, mainly due to their capacity to capture rich spatiotemporal patterns. Additionally, adding IoT sensors, remote data, and meteorological parameters enhances the model's efficiency to manage irrigation in real time. The benefits of these improvements lead to input costs being 10-20% lower, yields are typically improved by 15-25%, CO2 emissions are reduced, and pesticides are used far less frequently, between 30 – 40%. The use of AI has demonstrated diverse promising applications, although practical difficulties such as data quality, computational requirements, and the fusion with traditional practices still exist. This work provides a direction line to follow research in federated learning, explainable AI, transfer learning, and edge computing. ML Technologies, as in every field, represent a revolutionary development in agricultural water management that provides vital means of sustainable agriculture and water saving.

References

  • Ahmed, A. A., Sayed, S., Abdoulhalik, A., Moutari, S., & Oyedele, L. (2024). Applications of machine learning to water resources management: A review of present status and future opportunities. Journal of Cleaner Production, 441, 140715. https://doi.org/10.1016/j.jclepro.2024.140715
  • Akter, J., Nilima, S. I., Hasan, R., Tiwari, A., Ullah, M. W., & Kamruzzaman, M. (2024). Artificial intelligence on the agro-industry in the United States of America. AIMS Agriculture and Food, 9(4), 959-979. https://doi.org/10.3934/agrfood.2024052
  • Alharbi, S., Felemban, A., Abdelrahim, A., & Al-Dakhil, M. (2024). Agricultural and technology-based strategies to improve water-use efficiency in arid and semiarid areas. Water, 16(13), 1842. https://doi.org/10.3390/w16131842
  • Al-Nouti, A. F., Fu, M., & Bokde, N. D. (2024). Reservoir operation based machine learning models: Comprehensive review for limitations, research gap, and possible future research direction. Knowledge-Based Engineering and Sciences, 5(2), 75-139. https://doi.org/10.51526/kbes.2024.5.2.75-139
  • Alshehri, F., & Rahman, A. (2023). Coupling machine and deep learning with explainable artificial intelligence for improving prediction of groundwater quality and decision-making in arid region, Saudi Arabia. Water, 15(12), 2298. https://doi.org/10.3390/w15122298
  • Anguraj, D. K., Mandhala, V. N., Bhattacharyya, D., & Kim, T. (2021). Hybrid neural network classification for irrigation control in WSN based precision agriculture. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02704-6
  • Anushree, G., Madagaonkar, S. B., & Ravili, C. H. (2024). Unveiling the black box: a comprehensive review of explainable ai techniques. Indian Scientific Journal of Research in Engineering and Management, 8(9), 1–11. https://doi.org/10.55041/ijsrem37405
  • Ayalew, A. T., & Lohani, T. K. (2023). Prediction of crop yield by support vector machine coupled with deep learning algorithm procedures in Lower Kulfo watershed of Ethiopia. Journal of Engineering, 2023, 1–8. https://doi.org/10.1155/2023/6675523
  • Ayaz, A., Rajesh, M., Singh, S. K., & Rehana, S. (2021). Estimation of reference evapotranspiration using machine learning models with limited data. AIMS Geosciences, 7(3), 268-290. https://doi.org/10.3934/geosci.2021016
  • Baio, F. H. R., Santana, D. C., Teodoro, L. P. R., Oliveira, I. C. d., Gava, R., de Oliveira, J. L. G., Silva Junior, C. A. d., Teodoro, P. E., & Shiratsuchi, L. S. (2023). Maize yield prediction with machine learning, spectral variables and irrigation management. Remote Sensing, 15(1), 79. https://doi.org/10.3390/rs15010079
  • Bal, F., & Kayaalp, F. (2021). Review of machine learning and deep learning models in agriculture. International Advanced Researches and Engineering Journal, 5(2), 309–323. https://doi.org/10.35860/iarej.848458
  • Baljon, M. (2023). Revolutionizing Saudi Arabia’s Agriculture: The IoT transformation of water management. Journal of Advanced Research in Applied Sciences and Engineering Technology, 36(1), 217–240. https://doi.org/10.37934/araset.36.1.217240
  • Belarbi, Z., & El Younoussi, Y. (2025). A review on optimizing water management in agriculture through smart irrigation systems and machine learning. E3S Web of Conferences, 601, 00078. https://doi.org/10.1051/e3sconf/202560100078
  • Benti, N. E., Chaka, M. D., Semie, A. G., Warkineh, B., & Soromessa, T. (2024). Transforming agriculture with Machine Learning, Deep Learning, and IoT: perspectives from Ethiopia—challenges and opportunities. Discover Agriculture, 2(63). https://doi.org/10.1007/s44279-024-00066-7
  • Beucler, T., Gentine, P., Yuval, J., Gupta, A., Peng, L., Lin, J., Yu, S., Rasp, S., Ahmed, F., O’Gorman, P. A., Neelin, J. D., Lutsko, N. J., & Pritchard, M. (2024). Climate-invariant machine learning. Science Advances, 10(6). https://doi.org/10.1126/sciadv.adj7250
  • Boopathi, S. (2024). Sustainable development using IoT and AI techniques for water utilization in agriculture. In Sustainable development in AI, blockchain, and e-governance applications (pp. 204–228). IGI Global. https://doi.org/10.4018/979-8-3693-1722-8.ch012
  • Brauman, K. A., Siebert, S., & Foley, J. A. (2013). Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environmental Research Letters, 8(2), 024030. https://doi.org/10.1088/1748-9326/8/2/024030
  • Campi, P., Modugno, A. F., De Carolis, G., Pedrero Salcedo, F., Lorente, B., & Garofalo, S. P. (2024). A machine learning approach to monitor the physiological and water status of an irrigated peach orchard under semi-arid conditions by using multispectral satellite data. Water, 16(16), 2224. https://doi.org/10.3390/w16162224
  • Chethan, G. S., Vaishnavi, G. P., Banu, T., Sinchana, D., & Priyanka, R. (2025). IOT based smart irrigation system using ML. International Journal of Scientific Research in Engineering and Management, 9(12). https://doi.org/10.55041/ijsrem
  • Chieochan, O., Saokaew, A., & Boonchieng, E. (2017). Internet of things (IOT) for smart solar energy: A case study of the smart farm at Maejo University. 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), October 31 - November 1, 2017, Chiang Mai, Thailand. IEEE. https://doi.org/10.1109/ICCAIS.2017.8217588
  • Chen, X., Lou, Y., Hong, S., Zhang, X., Huang, Q., & Huang, G. (2024). Assessment of meteorological factors and human activities impact on wheat and maize water requirements in the Yellow River Basin. Science of The Total Environment, 177056. https://doi.org/10.1016/j.scitotenv.2024.177056
  • Cho, S. B., Soleh, H. M., Choi, J. W., Hwang, W.-H., Lee, H., Cho, Y.-S., Cho, B.-K., Kim, M. S., Baek, I., & Kim, G. (2024). Recent methods for evaluating crop water stress using AI techniques: A review. Sensors 24(19), 6313. https://doi.org/10.3390/s24196313
  • Constantin, D. M., Mincu, F. I., Diaconu, D. C., Burada, C. D., & Băltățeanu, E. (2025). Water management in wheat farming in Romania: Simulating the irrigation requirements with the CROPWAT model. Agronomy, 15(1), 61. https://doi.org/10.3390/agronomy15010061
  • Debnath, J., Kumar, K., Roy, K., Choudhary, R. D., & Krishna, A. P. U. (2024). Precision agriculture: A review of AI vision and machine learning in soil, water, and conservation practice. International Journal for Research in Applied Science and Engineering Technology, 12(12), 2130–2141. https://doi.org/10.22214/ijraset.2024.66166
  • Descheemaeker, K., Bunting, S. W., Bindraban, P. S., Muthuri, C., Molden, D., Beveridge, M., van Brakel, M., Herrero, M., Clement, F., Boelee, E., & Jarvis, D. I. (2013). Increasing water productivity in Agriculture. In Managing water and agroecosystems for food security (pp. 104–123). CABI Digital Library. https://doi.org/10.1079/9781780640884.0104
  • Dhillon, R., & Moncur, Q. (2023). Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability, 15(21), 15478. https://doi.org/10.3390/su152115478
  • Dong, Y., Senthilvel, P. V., & Cho, M. S. (2024). Monitoring spatial variability of soil moisture in an orchard using an LoRa-enabled IoT sensor technology. In SoutheastCon 2024. IEEE. https://doi.org/10.1109/SoutheastCon52093.2024.10500243
  • Eze, V. H. U., Eze, E. C., Alaneme, G. U., Bubu, P. E., Nnadi, E. O. E., & Okon, M. B. (2025). Integrating IoT sensors and machine learning for sustainable precision agroecology: enhancing crop resilience and resource efficiency through data-driven strategies, challenges, and future prospects. Discover Agriculture, 3(83). https://doi.org/10.1007/s44279-025-00247-y
  • Ferrarezi, R. S., Dove, S. K., & van Iersel, M. W. (2015). An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. HortTechnology, 25(1), 110–118. https://doi.org/10.21273/horttech.25.1.110
  • Gabr, M. E. (2021). Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: a case study of Tina Plain and East South ElKantara regions, North Sinai, Egypt. Archives of Agronomy and Soil Science, 68(10), 1322–1337. https://doi.org/10.1080/03650340.2021.1892650
  • Gaddikeri, V., Rajput, J., Dimple, Singh Jatav, M., Kumari, A., Rana, L., Rai, A., & Gangwar, A. (2024). Estimating crop water requirement in Madhya Pradesh’s agro-climatic regions: A CROPWAT and CLIMWAT software case study. Environment Conservation Journal, 25(1), 308–326. https://doi.org/10.36953/ecj.26022353
  • Hoppe, H., Dietrich, P., Marzahn, P., Weiß, T., Nitzsche, C., Freiherr von Lukas, U., Wengerek, T., & Borg, E. (2024). Transferability of machine learning models for crop classification in remote sensing imagery using a new test methodology: A study on phenological, temporal, and spatial influences. Remote Sensing, 16(9), 1493. https://doi.org/10.3390/rs16091493
  • Huang, F., Zhang, Y., Zhang, Y., Nourani, V., Li, Q., Li, L., & Shangguan, W. (2023). Towards interpreting machine learning models for predicting soil moisture droughts. Environmental Research Letters, 18(7), 074002. https://doi.org/10.1088/1748-9326/acdbe0
  • Joice, A., Tufaique, T., Tazeen, H., Igathinathane, C., Zhang, Z., Whippo, C., Hendrickson, J., & Archer, D. (2025). Applications of Raspberry Pi for Precision Agriculture—A Systematic Review. Agriculture, 15(3), 227. https://doi.org/10.3390/agriculture15030227
  • Jovanovic, N., Pereira, L. S., Paredes, P., Pôças, I., Cantore, V., & Todorovic, M. (2020). A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods. Agricultural Water Management, 239, 106267. https://doi.org/10.1016/j.agwat.2020.106267
  • Katimbo, A., Rudnick, D. R., Zhang, J., Ge, Y., Dejonge, K. C., Franz, T. E., Shi, Y., Liang, W.-Z., Qiao, X., Heeren, D. M., Kabenge, I., Nakabuye, H. N., & Duan, J. (2023). Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating crop evapotranspiration and crop water stress index for irrigation water management. Smart Agricultural Technology, 4, 100176. https://doi.org/10.1016/j.atech.2023.100176
  • Kumar, P., Udayakumar, A., Anbarasa Kumar, A., Senthamarai Kannan, K., & Krishnan, N. (2022). Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation. Environmental Monitoring and Assessment, 195, 13. https://doi.org/10.1007/s10661-022-10529-3
  • Kumar, R., Jat, M. K., & Shankar, V. (2012). Methods to estimate irrigated reference crop evapotranspiration – a review. Water Science and Technology, 66(3), 525–535. https://doi.org/10.2166/wst.2012.191
  • Kumar, Y. J. N., Spandana, V., Vaishnavi, V. S., Neha, K., & Devi, V. G. R. R. (2020). Supervised machine learning approach for crop yield prediction in agriculture sector. 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India. IEEE. https://doi.org/10.1109/ICCES48766.2020.9137868
  • Martin, R. J., Mittal, R., Malik, V., Jeribi, F., Siddiqui, S. T., & Hossain, M. A. (2024). XAI-powered smart agriculture framework for enhancing food productivity and sustainability. IEEE Access, 12, 168412-168427. https://doi.org/10.1109/ACCESS.2024.3492973
  • Mokhtar, A., Al-Ansari, N., El-Ssawy, W., Graf, R., Aghelpour, P., He, H., Hafez, S. M., & Abuarab, M. (2023). Prediction of irrigation water requirements for green beans-based machine learning algorithm models in arid region. Water Resources Management, 37, 1557–1580. https://doi.org/10.1007/s11269-023-03443-x
  • Mole, M. (2025). Revolutionizing agricultural water management through AI-driven irrigation systems: A comprehensive framework for sustainable farming practices. International Journal of Computing and Engineering, 7(21), 1–11. https://doi.org/10.47941/ijce.3092
  • Morepje, M. T., Agholor, I. A., Sithole, M. Z., Mgwenya, L. I., Msweli, N. S., & Thabane, V. N. (2024). An analysis of the acceptance of water management systems among smallholder farmers in Numbi, Mpumalanga Province, South Africa. Sustainability, 16(5), 1952. https://doi.org/10.3390/su16051952
  • Munaganuri, R. K., & Rao, Y. N. (2024). PAMICRM: Improving precision agriculture through multimodal image analysis for crop water requirement estimation using multidomain remote sensing data samples. IEEE Access, 12, 52815–52836. https://doi.org/10.1109/access.2024.3386552
  • Nagappan, M., Gopalakrishnan, V., & Alagappan, M. (2020). Prediction of reference evapotranspiration for irrigation scheduling using machine learning. Hydrological Sciences Journal, 65(16), 2669–2677. https://doi.org/10.1080/02626667.2020.1830996
  • Padhiary, M., Hoque, A., Prasad, G., Kumar, K., & Sahu, B. (2025). Precision agriculture and AI-driven resource optimization for sustainable land and resource management. In Smart water technology for sustainable management in modern cities (pp. 197–232). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8074-1.ch009
  • Palanivel, K., & Surianarayanan, C. (2019). An approach for prediction of crop yield using machine learning and big data techniques. International Journal of Computer Engineering and Technology, 10(3), 110-118. https://doi.org/10.34218/ijcet.10.3.2019.013
  • Patil, S. B., Kulkarni, R. B., Patil, S. S., & Kharade, P. A. (2024). Machine learning based precision agriculture model for farm irrigation to optimize water usage. IOP Conference Series: Earth and Environmental Science, 1285, 012026. https://doi.org/10.1088/1755-1315/1285/1/012026
  • Patle, G. T., & Panggeng, T. (2024). Assessment of crop water requirement and irrigation scheduling for selected crops in the Kohima district, Nagaland, India. Water Practice & Technology, 19(3), 812–823. https://doi.org/10.2166/wpt.2024.047
  • Paudel, D., De Wit, A., Boogaard, H., Marcos, D., Osinga, S., & Athanasiadis, I. N. (2023). Interpretability of deep learning models for crop yield forecasting. Computers and Electronics in Agriculture, 206, 107663. https://doi.org/10.1016/j.compag.2023.107663
  • Pereira, L. S., Paredes, P., & Jovanovic, N. (2020). Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agricultural Water Management, 241, 106357. https://doi.org/10.1016/j.agwat.2020.106357
  • Polwaththa, K. P. G. D. M., Amarasinghe, S. T. C., Amarasinghe, A. A. Y. D., & Amarasinghe, A. A. Y. (2024). Exploring artificial intelligence and machine learning in precision agriculture: A pathway to improved efficiency and economic outcomes in crop production. American Journal of Agricultural Science, Engineering, and Technology, 8(3), 50-59. https://doi.org/10.54536/ajaset.v8i3.3843
  • Priya, N. M., Amudha, G., Dhurgadevi, M., Malathi, N., Balakrishnan, K., & Preetha, M. (2024). IoT and machine learning based precision agriculture through the integration of wireless sensor networks. Journal of Electrical Systems, 20(4s), 2292–2299. https://doi.org/10.52783/jes.2399
  • Priyatikanto, R., Lu, Y., Dash, J., & Sheffield, J. (2023). Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation. Agricultural and Forest Meteorology, 341, 109652. https://doi.org/10.1016/j.agrformet.2023.109652
  • Rastogi, M., Kolur, S. M., Burud, A., Sadineni, T., Sekhar, M., Kumar, R., & Rajput, A. (2024). Advancing water conservation techniques in agriculture for sustainable resource management: A review. Journal of Geography, Environment and Earth Science International, 28(3), 41-53. https://doi.org/10.9734/jgeesi/2024/v28i3755
  • Ritambara, R., Kaushal, S., & Shubham, S. (2024). Frontiers of artificial intelligence in agricultural sector: Trends and Transformations. Journal of Scientific Research and Reports, 30(10), 970–980. https://doi.org/10.9734/jsrr/2024/v30i102518
  • Saad, A., Benyamina, A. E. H., & Gamatié, A. (2020). Water management in agriculture: A survey on current challenges and technological solutions. IEEE Access, 8, 38082-38097. https://doi.org/10.1109/ACCESS.2020.2974977
  • Saggi, M. K., & Jain, S. (2022). A survey towards decision support system on smart irrigation scheduling using machine learning approaches. Archives of Computational Methods in Engineering, 29(7), 4455–4478. https://doi.org/10.1007/s11831-022-09746-3
  • Sahoo, L., Mohapatra, D., Raghuvanshi, H. R., Kumar, S., Kaur, R., Anshika, Sapna, Chawla, R., & Afreen, N. (2024). Transforming agriculture through artificial intelligence: Advancements in plant disease detection, applications, and challenges. Journal of Advances in Biology & Biotechnology, 27(5), 381-388. https://doi.org/10.9734/jabb/2024/v27i5796
  • Salih, A. M., Raisi-Estabragh, Z., Boscolo Galazzo, I., Radeva, P., Petersen, S. E., Lekadir, K., & Menegaz, G. (2024). A perspective on explainable artificial intelligence methods: SHAP and LIME. Advanced Intelligent Systems, 7(1), 2400304. https://doi.org/10.1002/aisy.202400304
  • Shuttleworth, W., & Wallace, J. (2009). Calculating the water requirements of irrigated crops in Australia using the Matt-Shuttleworth approach. Transactions of the ASABE, 52(6), 1895–1906. https://doi.org/10.13031/2013.29217
  • Suresh, P., Aswathy, R. H., Krishnappa, V. D., & Rajasree, P. M. (2024). Efficient IoT -machine learning based smart irrigation using support tree algae algorithm. IETE Journal of Research, 70(8), 6775–6790. https://doi.org/10.1080/03772063.2024.2319707
  • Surve, V., Hitesh, Patel, H. H., & Payal. (2024). Sensor based irrigation management in crop production: A review. Annual Research & Review in Biology, 39(4), 1-4. https://doi.org/10.9734/arrb/2024/v39i42068
  • Swathi Kumari, H., & Veeramanju, K. T. (2024). Predictive models for optimal irrigation scheduling and water management: A review of AI and ML approaches. International Journal of Management, Technology, and Social Sciences (IJMTS), 9(2), 94-110. https://doi.org/10.5281/zenodo.11208711
  • Todorovic, M. (2005). Crop water requirements. In Water Encyclopedia. Wiley Online Library. https://doi.org/10.1002/047147844X.aw59
  • Tolomio, M., & Casa, R. (2020). Dynamic crop models and remote sensing irrigation decision support systems: A review of water stress concepts for improved estimation of water requirements. Remote Sensing, 12(23), 3945. https://doi.org/10.3390/rs12233945
  • Umutoni, L., & Samadi, V. (2024). Application of machine learning approaches in supporting irrigation decision making: A review. Agricultural Water Management, 294, 108710. https://doi.org/10.1016/j.agwat.2024.108710
  • Valecce, G., Petruzzi, P., Strazzella, S., & Grieco, L. A. (2020). NB-IoT for Smart Agriculture: Experiments from the Field. In 2020 7th International Conference on Control, Decision and Information Technologies (pp. 71–75). https://doi.org/10.1109/codit49905.2020.9263860
  • Vignesh, K., Askarunisa, A., & Abirami, A. M. (2023). Optimized deep learning methods for crop yield prediction. Computer Systems Science and Engineering, 44(2), 1051-1067. https://doi.org/10.32604/csse.2023.024475
  • Virnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020). Remote sensing and machine learning for crop water stress determination in various crops: a critical review. Precision Agriculture, 21, 1121–1155. https://doi.org/10.1007/s11119-020-09711-9
  • Wanniarachchi, S., & Sarukkalige, R. (2022). A review on evapotranspiration estimation in agricultural water management: Past, present, and future. Hydrology, 9(7), 123. https://doi.org/10.3390/hydrology9070123
  • Wei, S., Xu, T., Niu, G.-Y., & Zeng, R. (2022). Estimating irrigation water consumption using machine learning and remote sensing data in Kansas High Plains. Remote Sensing, 14(13), 3004. https://doi.org/10.3390/rs14133004
  • Xing, Y., & Wang, X. (2024). Precision agriculture and water conservation strategies for sustainable crop production in arid regions. Plants, 13(22), 3184. https://doi.org/10.3390/plants13223184
  • Yadav, B., Koradia, A., Pandey, A., Chowdary, V., & Kk, C. (2025). Exploring the sensitivity of crop water footprints to scale and estimation methods in sustainable agriculture. EGU General Assembly 2025, Vienna, Austria. https://doi.org/10.5194/egusphere-egu25-98
  • Ye, Z., Yin, S., Cao, Y., & Wang, Y. (2024). AI-driven optimization of agricultural water management for enhanced sustainability. Scientific Reports, 14, 25721. https://doi.org/10.1038/s41598-024-76915-8
  • Zangana, H. M., Luckyardi, S., Mustafa, F. M., & Li, S. (2025). Ethical and Secure AI Applications in Agricultural Research: Challenges and Opportunities (pp. 43–76). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-4252-8.ch002
There are 76 citations in total.

Details

Primary Language English
Subjects Agricultural Water Management
Journal Section Review Article
Authors

Deniz Levent Koç 0000-0002-4495-3060

Semin Topaloğlu Paksoy 0000-0003-1693-0184

Submission Date November 11, 2025
Acceptance Date December 17, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Koç, D. L., & Topaloğlu Paksoy, S. (2025). Machine Learning Approaches for Crop Water Requirement Prediction and Optimization. International Journal of Agriculture Environment and Food Sciences, 9(Special), 293-306. https://doi.org/10.31015/2025.si.29

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27