Comparison of Pixel-Based and Object-Based Classification Methods in Evaluating Different High-Resolution Remote Sensing Data
Year 2025,
Volume: 9 Issue: Special, 103 - 114, 28.12.2025
Mesut Çoşlu
,
Namık Kemal Sönmez
Abstract
In recent years, with advancements in both computer and sensor technologies, new digital image processing techniques are frequently used in the processing of remote sensing data. In this context, object-based image analysis stands out, especially in the analysis of high spatial resolution data. This study aims to evaluate the pixel-based and object-based classification performances of high-resolution unmanned aerial vehicle (UAV) and WorldView-4 (WV4) satellite data and to determine the effect of vegetation indices added as additional bands to high-resolution data on the object-based classification result. According to the findings of the study, the highest overall accuracy (75.40%) was determined for the six-band UAV data. In the object-based classification phase of the study, it was determined that the vegetation indices added as additional bands to WV4, and UAV data increased the quality of the object-based classification process by an average of 2.43%. The findings obtained from the research indicated that adding additional bands to UAV data increased the overall accuracy in object-based classification.
Thanks
This study is derived from the first author's master’s thesis.
References
-
Aguilar, M.A. Bianconi, F., Fernando. J.A. & Ismael. F. (2014). Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sensing, 6. 3554-3582. 10.3390/rs6053554
-
Akumu, C. E., Amadi, E. O. & Dennis, S. (2021). Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: Pre-and post-flooding. Land, 10, 321. https://doi.org/10.3390/land10030321
-
Alam, A., Bhat, M. S. & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85, 1529–1543. https://doi.org/10.1007/s10708-019-10037-x
-
Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N. & Mansor, S. (2019). Land cover classification from fused DSM and UAV ımages using convolutional neural networks. Remote Sensing, 11(12), 1461. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs11121461
-
Anzar, S. M., Sherin, K., Panthakkan, A., Al Mansoori, S., & Al-Ahmad, H. (2025). Evaluation of UAV-Based RGB and Multispectral Vegetation Indices for Precision Agriculture in Palm Tree Cultivation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-G-2025, 163–170. https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-163-2025
-
Aydın, I., & Sefercik, U. G. (2025). NDVI Prediction with RGB UAV Imagery Utilizing Advanced Machine Learning Regression Models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-6-2025, 67–72. https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-67-2025
-
Blaschke, T. (2010). Object-based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004
-
Basheer, S., Wang, X., Farooque, A. A., Nawaz, R. A., Liu, K., Adekanmbi, T. & Liu, S. (2022). Comparison of land use land cover classifiers using different satellite imagery and machine learning techniques. Remote Sensing, 14(19), 4978. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs14194978
-
Başayiğit, L. & Ersan, R. (2015). Comparison of pixel-based and object-based classification methods for separation of crop patterns. Scientific Papers. Series E. Land Reclamation. Earth Observation & Surveying. Environmental Engineering, Vol. IV. 2015 Print ISSN 2285-6064.
-
Canıberk, M. (2015). Hiperspektral görüntülerin eğitimsiz sınıflandırma sonuçlarının karşılaştırılması. Harita Dergisi, Sayı 154. 19-25.
-
Cerovski-Darriau, C. & Roering, J. J. (2016). Influence of anthropogenic land-use change on hillslope erosion in the Waipaoa River Basin, New Zealand. Earth Surface Processes and Landform, 41, 2167–2176. https://doi.org/10.1002/esp.3969
-
Chaves, M.E.D., C. A. Picoli, M. & D. Sanches, I. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), 3062. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs12183062.
-
Chen, Z., Wang, L., Wei, A., Gao, J., Lu, Y. & Zhou, J. (2019). Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment. Science of The Total Environment, 648, 1097–1104. https://doi.org/10.1016/j.scitotenv.2018.08.141
-
Cheng, X., Chen, J., Li, J., Yin, J., Cheng, Q., Chen, Z., Li, X., You, H., Han, X., & Zhou, G. (2025). Enhanced DeepLabV3+ with OBIA and Lightweight Attention for Accurate and Efficient Tree Species Classification in UAV Images. Sensors, 25(24), 7501. https://doi.org/10.3390/s25247501
-
Çölkesen, İ. (2015). Yüksek çözünürlüklü uydu görüntüleri kullanarak benzer spektral özelliklere sahip doğal nesnelerin ayırt edilmesine yönelik bir metodoloji geliştirme. Doctoral Thesis, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
-
Dandois, J.P., Olano. M., & Ellis. E.C. (2015). Optimal altitude overlap and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing, 7, 13895-13920, https://doi.org/10.3390/rs71013895
-
Demir, S., & Başayiğit, L. (2019). Determination of opium poppy (Papaver somniferum) parcels using high-resolution satellite imagery. Journal of the Indian Society of Remote Sensing, 47(6), 977-987. https://doi.org/10.1007/s12524-019-00955-1
-
Gasparovic, M., Rumora, L., Miler, M. & Medak, D. (2019). Effect of fusing Sentinel-2 and WorldView-4 imagery on the various vegetation indices. Journal of Applied Remote Sensing, 13(3), 036503 (30 July 2019). https://doi.org/10.1117/1.JRS.13.036503
-
Hamedianfar, A. & Shafri, M. (2015). Detailed intra-urban mapping through transferable OBIA rule sets using WorldView-2 very-high-resolution satellite images. International Journal of Remote Sensing, Vol. 36. No. 13. 3380–3396. https://doi.org/10.1080/01431161.2015.1060645
-
Hamedianfar, A., & Shafri, M. (2016). Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data. Journal of Applied Remote Sensing, Vol. 10, Issue 2, 025001. https://doi.org/10.1117/1.JRS.10.025001
-
Hu, Y., Fu, S., Liu, J., Miao, C., Xiu, Y., Feng, J. G. Q., ... & Liang, T. (2025). Object-Based Image Analysis of Sentinel-1/2 Time Series Using Deep Learning for Field-Scale Alfalfa Yield Mapping. Smart Agricultural Technology. https://doi.org/10.1016/j.atech.2025.101588
-
Huang, H., Lan, Y., Yang, A., Zhang, Y., Wen, S., & Deng, J. (2020). Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery. International Journal of Remote Sensing, 41(9), 3446–3479. https://doi.org/10.1080/01431161.2019.1706112
-
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, vol. 25. issue 3. pp. 259-309.
-
Islam, M.K., Simic Milas, A., Abeysinghe, T., & Tian, Q. (2023). Integrating UAV-Derived information and WorldView-3 imagery for mapping wetland plants in the Old Woman Creek Estuary, USA. Remote Sensing, 15, 1090. https://doi.org/10.3390/rs15041090
-
Jong, S.M.d., Meer, F. D.v., Clevers, J.G. (2004). Basics of Remote Sensing. In: Jong, S.M.D., Meer, F.D.V. (eds) Remote Sensing Image Analysis: Including The Spatial Domain. Remote Sensing and Digital Image Processing, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2560-0_1
-
Jozdani, S. E., Johnson, B. A., & Chen, D. (2019). Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14), 1713. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs11141713
-
Jumaat, N.F.H., Ahmad, B., Dutsenwai, H.S. (2018). Land cover change mapping using high resolution satellites and unmanned aerial vehicle. IOP Conf. Series: Earth and Environmental Science. 169, 012076.
-
Kalem, E. (2014). Piksel ve nesne tabanlı sınıflandırma açısından Göktürk 2 görüntüsünün değerlendirilmesi: İstanbul boğazı örneği. Master’s Thesis, Hava Harp Okulu Havacılık ve Uzay Teknolojileri Enstitüsü, İstanbul.
-
Kalkan, K., & Maktav, D. (2010). Nesne tabanlı ve piksel tabanlı sınıflandırma yöntemlerinin karşılaştırılması (Ikonos Örneği). III. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, Gebze Teknik Üniversitesi, Kocaeli.
-
Koç-San, D., & Sönmez. N.K. (2016). Plastic and glass greenhouses detection and delineation from WorldView-2 satellite ımagery. XXIII Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS). Prague. Czech Republic. vol.XLI-B7. pp.257-262, https://doi.org/10.5194/isprs-archives-XLI-B7-257-2016
-
Laben, C. A., Bernard, V., & Brower, W. (2000). Process for enhancing the spatial resolution of multispectral ımagery using pan-sharpening. US Patent 6.011.875.
-
Li, Y., Brando, P.M., Morton, D.C., Lawrance, D.M., Yang, H., & Randerson, J.T. (2022). Deforestation-induced climate change reduces carbon storage in remaining tropical forests. National Communications, 13, 1964. https://doi.org/10.1038/s41467-022-29601-0.
-
Majid, M. I., Chen, Y., Mahfooz, O., & Ahmed, W. (2020). UAV-based smart environmental monitoring. In Employing Recent Technologies for Improved Digital Governance; Information Science Reference: Hershey, PA, USA.
-
Manandhar, R., Odeh, I., & Ancev, T. (2009). Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement. Remote Sensing, 1(3), 330–344. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs1030330
-
Mugiraneza, T., Nascetti, A., & Ban, Y. (2019). WorldView-2 data for hierarchical object-based urban land cover classification in Kigali: Integrating rule-based approach with urban density and greenness ındices. Remote Sensing, 11(18), 2128. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs11182128
-
Nagy, A., Szabó, A., Adeniyi, O.D., & Tamás, J. (2021). Wheat yield forecasting for the Tisza River catchment using Landsat 8 NDVI and SAVI time series and reported crop statistics. Agronomy, 11, 652. https://doi.org/10.3390/agronomy11040652
-
Peña-Barragán, M.J., Ngugi, K.M., Plant, E.R., & Six. J. (2011). Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115 (2011) 1301–1316, https://doi.org/10.1016/j.rse.2011.01.009
-
Rumora, L., Gašparović, M., Miler, M., & Medak, D. (2019). Quality assessment of fusing Sentinel-2 and WorldView-4 imagery on Sentinel-2 spectral band values: a case study of Zagreb, Croatia. International Journal of Image and Data Fusion, 11(1), 77–96. https://doi.org/10.1080/19479832.2019.1683624
-
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Deering monitoring vegetation systems in the Great Plains with ERTS S.C. Freden. E.P. Mercanti. M. Becker (Eds.). Third earth resources technology satellite-1 symposium. vol. 1: technical presentations. NASA SP-351. National Aeronautics and Space Administration. Washington. 309-317.
-
Sefercik, U. G., Alkan, M., Atalay, C. Jacobsen, K., Büyüksalih, G., & Karakış S. (2020). Optimizing the achievable information content extraction from WorldView-4 stereo imagery. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88, 449–461. https://doi.org/10.1007/s41064-020-00127-8
-
Sertel, E., Ekim, B., Ettehadi Osgouei, P., & Kabadayi, M.E. (2022). Land use and land cover mapping using deep learning based segmentation approaches and VHR Worldview-3 images. Remote Sensing, 14(18), 4558. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs14184558
-
Schowengerdt, R.A. (2007). CHAPTER 1 - The Nature of Remote Sensing, Editor(s): Robert A. Schowengerdt, Remote Sensing (Third Edition), Academic Press, 2007, Pages 1-X, ISBN 9780123694072, https://doi.org/10.1016/B978-012369407-2/50004-8
-
Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs12071135
-
Theodoridis, S., & Koutroumbas, K. (2009). Chapter 14 - Clustering Algorithms III: Schemes Based on Function Optimization, Editor(s): Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition (Fourth Edition), Academic Press, 2009, Pages 701-763, ISBN 9781597492720, https://doi.org/10.1016/B978-1-59749-272-0.50016-5
-
Trimble (2016). Multiresolution concept flow diagram. Trimble Documentation, eCognition Developer 9.2 Reference Book. Munich, Germany.
-
Tuğaç, M. G. (2021). GIS-Based Land Suitability Classification for Wheat Cultivation Using Fuzzy Set Model. International Journal of Agriculture Environment and Food Sciences, 5(4), 524-536. https://doi.org/10.31015/jaefs.2021.4.12
-
Wyard, C., Beaumont, B., Grippa, T., & Hallot, E. (2022). UAV-based landfill land cover mapping: optimizing data acquisition and open-source processing protocols. Drones, 6(5), 123. MDPI AG. Retrieved from http://dx.doi.org/10.3390/drones6050123
-
Weih, R. C., & Riggan, N. D. (2010). Object-based classification vs. pixel-based classifıcation: comparitive ımportance of multi-resolution imagery. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7.
-
Zerrouki., N., & Bouchaffra, D. (2014). Pixel-Based or Object-Based: Which approach is more appropriate for remote sensing image classification? IEEE International Conference on Systems. Man. and Cybernetics October 5-8. 2014. San Diego. CA. USA.
-
Zoleikani, R., Zoej, M.J.V., & Mokhtarzadeh, M. (2017). Comparison of pixel and object oriented based classification of hyperspectral pansharpened images. Journal of the Indian Society of Remote Sensing, 45: 25-33. https://doi.org/10.1007/s12524-016-0573-6