Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of morphological responses and plant nutrient preferences of some vine rootstocks grown under in vitro salt stress conditions

Yıl 2021, Cilt: 5 Sayı: 4, 616 - 627, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.22

Öz

The study was performed to determine mineral nutrition preferences and the morphological response against the salt stress of the rootstocks used in Turkey. 41B, 5BB, 140Ru, Salt Creek, and SO4 were used as rootstocks, and NaCl at concentrations of 0 (control), 0.75, and 1.5 g L-1 were applied to the plantlets grown in MS medium. The values of all shoot and root properties examined in this experiment decreased with increasing NaCl concentrations compared to control plants. The highest damage degree was seen on 41B, while there was no damage on Salt Creek plantlets. Shoot and root tolerance ratios of Salt Creek rootstock were found to be the best among the rootstock. These ratios were higher in 0.75 g L-1 than 1.5 g L-1 concentration. Leaf chlorophyll and nutrient content were negatively affected by the increasing NaCl doses. It has been found that all nutrient elements are positively affected by each other's uptake. The highest N, K, Ca, and Mg levels were detected in Salt Creek, while the lowest level was detected in 41B rootstock. Considering all the parameters examined, rootstocks are ranged from the most sensitive to the most resistant to salinity conditions; 41B, SO4, 5BB, 140Ru, and Salt Creek.

Destekleyen Kurum

Cukurova University Scientific Research Coordination Unit.

Proje Numarası

FYL-2018-10086

Teşekkür

This study was derived from Kaan Fethi KAYA's Master Thesis and supported by Cukurova University Scientific Research Coordination Unit (Project No: FYL-2018-10086).

Kaynakça

  • Alizadeh, M., Singh, S.K., Patel, V.B., Bhattacharya, R.C., Yadav, B.P. (2010). In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54(2), 381-385. Doi: https://doi.org/10.1007/s10535-010-0069-0
  • AOAC, (1970). Official methods of analysis, 11th eds. AOAC, Washington, DC, 16-17. Retrieved from https://law.resource.org/pub
  • Babalık, Z. (2012). Effects of salt and water stress on some physiological and biochemical characteristics of grapevines. Ph.D. Thesis, Süleyman Demirel University, Department of Horticulture, Graduate School of Applied and Natural Sciences, Isparta, 235p.
  • Bakır, M. (2012). Microarray analysis of grapevine cultivars and rootstocks intended for water deficiency and salt stress tolerances and determination of stress-related transcriptomes. Ph.D. Thesis, Ankara University, Graduate School of Biotechnology, Ankara, 168p.
  • Barakat, A.A., Hussein, B.A., Awad, N.A., Soliman, M.H. (2019). Evaluation of the two rootstocks (SO4 and Freedom) for the salt stress in vitro conditions. Plant Archives, 19(2), 500-507. Retrieved from https://www.researchgate.net/publication
  • Barton, C.J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry, 20(11), 1068-1073. Doi: https://doi.org/10.1021/ac60023a024
  • Battany, M. (2004). Grape notes:Salinity management for drought years. University of California Cooperative Extension. Retrieved from https://cesanluisobispo.ucanr.edu/news
  • Bonomelli, C., Ruiz, R. (2010). Effects of foliar and soil calcium application on yield and quality of table grape cv. ‘Thompson Seedless’. Journal of Plant Nutrition, 33(3), 299–314. Doi: https://doi.org/10.1080/01904160903470364
  • Boscaiu, M., Lull, C., Lidon, A., Bautista, I., Donat, P., Mayoral, O., Vicente, O. (2008). Plant responses to abiotic stress in their natural habitats. Bulletin UASVM Horticulture, 65(1), 53-58. Doi: http://dx.doi.org/10.15835/buasvmcnhort:458
  • Çelik, S. (2011). Bağcılık (Ampeloloji) Cilt:1. Avcı Ofset, İstanbul, Turkey, 428p, (in Turkish).
  • Dag, A., Ben-Gal, A., Goldberger, S., Yermiyahu, U., Zipori, I., Or, E., David, I., Netzer, Y., Kerem, Z. (2015). Sodium and chloride distribution in grapevines as a function of rootstock and irrigation water salinity. American Journal of Enology and Viticulture, 66(1), 80-84. Doi: https://doi.org/10.5344/ajev.2014.14019
  • Dardeniz, A., Müftüoğlu, N.M., Altay, H. (2006). Determination of salt tolerance of some american grape rootstocks. Bangladesh Journal of Botany, 35(2), 143-150. Retrieved from https://www.researchgate.net/publicatio
  • Desmukh, M.R., Karkampar, S.P., Patil, S.G. (2003). Screening of grape rootstocks for their salinity tolerance. Journal of Maharashtra Agricultural Universities, 28(2), 122-124.
  • Desouky, I.M., Shaltout, A.D., Laila, F.H., Shahin, M.F.M., El-Hady, E.S. (2015). Salinity tolerance of some grapevine cultivars as affected by salt creek and freedom rootstocks. Middle East Journal of Agriculture Research, 4(1), 112-122. Retrieved from https://www.curresweb.com/mejar
  • Edriss, M.H., Baghdad, G.A., Abdrabboh, G.A., Abdel Aziz, H.F. (2016). In vitro responses of some grape rootstocks to salt stress. 3. International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Sharm El-Sheikh, 5-9 April 2016, Egypt, 1-8p. Retrieved from https://www.researchgate.net/profile/Hosny
  • Esfandiari, E., Pourmohammad, A. (2013). Evaluation of the salinity effects on some physiological and biochemical characteristics of two wheat cultivars. YYU Journal of Agricultural Science, 23(2), 141-148. Retrieved from https://dergipark.org.tr/en/pub
  • Fisarakis, I., Nikolaou, N., Tsikalas, P., Therios, I., Stavrakas, D. (2005). Effect of salinity and rootstock on concentration of potassium, calcium, magnesium, phosphorus, and nitrate–nitrogen in Thompson seedless grapevine. Journal of Plant Nutrition, 27(12), 2117-2134. Doi: http://dx.doi.org/10.1081/PLN-200034662
  • Fozouni, M., Abbaspour, N., Baneh, H.D. (2012a). Short term response of grapevine grown hydroponically to salinity:mineral composition and growth parameters. Vitis, 51(3), 95-101. Retrieved from https://www.researchgate.net/publication/258
  • Fozouni, M., Abbaspour, N., Baneh, H.D. (2012b). Leaf water potential, photosynthetic pigment and compatible solutes alterations in four grape cultivars under salinity. Vitis, 51(4), 147-152. Doi: https://doi.org/10.5073/vitis.2012.51.147-152
  • Haider, M.S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. Doi: https://doi.org/10.1016/j.envexpbot.2019.03
  • Hamrouni, L., Abdallah, F.B., Abdelly, C., Ghorbel, A. (2008). In vitro culture:A simple and efficient way for salt-tolerant grapevine genotype selection. Plant Biology and Pathology, Comptes Rendus Biologies, 33, 152-163. Doi: https://doi.org/10.1016/j.crvi.2007.11.002
  • Hao, X., Jiao, B., Liu, Z., Wang, X., Wang, J., Zhang, J., Wang, Q., Xu, Y., Wang, Q. (2021). Crosstalk between grapevine leafroll-associate virus-3 (GLRaV-3) and NaCl- induced salt stress in vitro cultures of the red grape ‘Cabernet Sauvignon’. Plant Cell Tissue and Organ Culture, 144(3), 1-12. Doi: https://doi.org/10.1007/s11240-020-01987-z
  • Hepaksoy, S., Ben-Asher, J., Molach, Y., David, I., Sagih, M., Bravdo, B. (2006). Grapevine irrigation with saline water: Effect of rootstocks on quality and yield of Cabernet Sauvignon. Journal of Plant Nutrition, 29(5), 783-795. Doi: https://doi.org/10.1080/01904160600649153
  • Kacar, B., Katkat, A.V., Öztürk, Ş. (2006). Bitki fizyolojisi. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti, Ankara, Turkey, 563p, (in Turkish).
  • Kıran, S., Kuşvuran, Ş., Özkay, F., Özgün, Ö., Sönmez, K., Özbek, H., Ellialtıoğlu, Ş.Ş. (2015). Comparison of development of some eggplant rootstock in the salinity stress conditions. International Journal of Agricultural and Natural Sciences (IJANS), 8(1), 20-30. Retrieved from http://www.ijans.org/index.php/ijans/article
  • Kök, D. (2012). Impacts of different salicylic acid doses on salinity tolerance of grapevine rootstocks. Namık Kemal University, Journal of Tekirdag Agricultural Faculty, 9(2), 32-40. Retrieved from https://dergipark.org.tr/en/pub/jotaf
  • Lo’ay, A.A., El-Ezz, S.F.A. (2021). Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Scientia Horticulturae, 275, 109704. Doi: https://doi.org/10.1016/j.scienta.2020.109704
  • Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158. Doi: https://doi.org/10.1016/j.abb.2005.10.018
  • Meşe, N., Tangolar, S. (2019). Determination of drought resistance of some American vine rootstocks using polyethylene glycol in vitro. YYU Journal of Agricultural Science, 29(3), 466-475. Doi: http://dx.doi.org/10.29133/yyutbd.559174
  • Mohammadkhani, N., Abbaspour, N. (2018). Absorption kinetics and efflux of chloride and sodium in the roots of four grape genotypes (Vitis L.) differing in salt tolerance. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1779-1793. Doi: https://dx.doi.org/10.1007/s40995-017
  • Mohammadkhani, N., Heidari, R., Abbaspour, N., Rahmani, F. (2013). Comparative study of salinity effects on ionic balance and compatible solutes in nine Iranian table grape (Vitis vinifera L.) genotypes. Journal International des Sciences de la Vigne et du Vin, 47(2), 99-114. Doi: http://dx.doi.org/10.20870/oeno-one.2013
  • Müftüoğlu, N.M., Dardeniz, A., Sungur, A., Altay, H. (2006). Determination of salt tolerance of some grape varieties. Selçuk University, Journal of Agriculture Faculty, 20(40), 37-42. Retrieved from https://docplayer.biz.tr/7035020
  • Munns, R. (2005). Genes and salt tolerance:Bringing them together. New Phytologist, 167(3), 645–663. Doi: https://doi.org/10.1111/j.1469
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. Doi: https://doi.org/10.1111/j.1399
  • Najafi, F., Khavari-Nejad, R.A., Rastgar-Jazii, F., Sticklen, M. (2007). Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pakistan Journal of Biological Sciences, 10(16), 2752-2755. Doi: https://doi.org/10.3923/pjbs.2007.2752.2755
  • Patil, S., Shinde, M., Prashant, R., Kadoo, N., Upadhyay, A., Gupta, V. (2020). Comparative proteomics unravels the differences in salt stress response of own-rooted and 110R grafted ‘Thompson Seedless’ grapevines. Journal of Proteome Research, 19, 583-599. Doi: https://doi.org/10.1021/acs.jproteome.9b0042
  • Popescu, C.F., Bejan, C., Dumitrica, R.N., Dejeu, L.C., Nedelea, G. (2015). Rootstocks and wild grapevines responses to salinity. Vitis, 54, 197-201. Doi: https://doi.org/10.5073/vitis.2015.54.special
  • Salem, A.T., Abdel-Aal, Y.A., Abdel-Mohsen, M.A., Yasin, W.H. (2011). Tolerance of ‘Flame Seedless’ grapes on own root and grafted to irrigation with saline solutions. Journal of Horticultural Science and Ornamental Plants, 3(3), 207-219. Retrieved from http://idosi.org/jhsop/3(3)11/
  • Singh, S.K., Sharma, H.C., Goswami, A.M., Datta, S.P., Singh, S.P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum, 43(2), 283-286. Doi: https://doi.org/10.1023/A:1002720714781
  • Sivritepe, N., Eriş, A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23, 473-485. Retrieved from https://www.researchgate.net/publicatio
  • Stevens, R.M., Harvey, G., Davies, G. (1996). Separating the effects of foliar and root salt uptake on growth and mineral composition of four grapevine cultivars on their own roots and on ‘Ramsey’ rootstock. Journal of the American Society for Horticultural Science, 121, 569–575. Doi: http://dx.doi.org/10.21273/JASHS.121.3.569
  • Storey, R., Schachtman, D.P., Thomas, M.R. (2003). Root structure and cellular chloride, sodium and potassium distrubution in salinized grapevines. Plant, Cell and Environment, 26, 789-800. Doi: https://doi.org/10.1046/j.1365
  • Tangolar, S., Ergenoğlu, F. (1989). Değişik anaçların erkenci bazı üzüm çeşitlerinde yaprakların mineral besin maddesi ve çubukların karbonhidrat içerikleri üzerine etkisi. Doğa Türk Tarım ve Ormancılık Dergisi, 13(3b), 1267-1283, (in Turkish).
  • Troncoso, A., Matte, C., Cantos, M., Lavee, S. (1999). Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis, 38(2), 55-60. Doi: https://doi.org/10.5073/vitis.1999.38.55-60
  • Turhan, E., Dardeniz, A., Müftüoğlu, N.M. (2005). Determining the tolerances to salinity stress of some American grapevine rootstocks. Journal Bahçe, 34(2), 11-19. Retrieved from https://www.researchgate.net/publication/295
  • Upadhyay, A., Gaonkar, T., Upadhyay, A.K., Jogaiah, S., Shinde, M.P., Kadoo, N.Y., Gupta, V.S. (2018). Global transcriptome analysis of grapevine (Vitis Vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. ‘Thompson Seedless’. Plant Physiology and Biochemistry, 129, 168−179. Doi: https://doi.org/10.1016/j.plaphy.2018.05.032
  • Uyar, H. (2016). Salt tolerance of ‘Hamburg Misketi’ (V. Vinifera L.) and ‘Isabella’ (V. Labrusca) grape cultivars. Master Thesis, Ordu University, Institute of Natural and Applied Sciences, Ordu, 62p.
  • Xiucai, F., Chonghuai, L., Xing, P., Jingnan, G., Min, L. (2004). Evaluation of salt tolerance of grape rootstocks under hydroponic culture conditions. Journal of Fruit Science, 2. Retrieved from https://en.cnki.com.cn/Article
  • Zhani, K., Elouer, M.A., Aloui, H., Hannachi, C. (2012). Selection of a salt-tolerant Tunisian cultivar of chili pepper (Capsicum frutescens). Eurasian Journal of Biosciences, 6, 47-59. Doi: http://dx.doi.org/10.5053/ejobios.2012.6.0.6
Yıl 2021, Cilt: 5 Sayı: 4, 616 - 627, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.22

Öz

Proje Numarası

FYL-2018-10086

Kaynakça

  • Alizadeh, M., Singh, S.K., Patel, V.B., Bhattacharya, R.C., Yadav, B.P. (2010). In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54(2), 381-385. Doi: https://doi.org/10.1007/s10535-010-0069-0
  • AOAC, (1970). Official methods of analysis, 11th eds. AOAC, Washington, DC, 16-17. Retrieved from https://law.resource.org/pub
  • Babalık, Z. (2012). Effects of salt and water stress on some physiological and biochemical characteristics of grapevines. Ph.D. Thesis, Süleyman Demirel University, Department of Horticulture, Graduate School of Applied and Natural Sciences, Isparta, 235p.
  • Bakır, M. (2012). Microarray analysis of grapevine cultivars and rootstocks intended for water deficiency and salt stress tolerances and determination of stress-related transcriptomes. Ph.D. Thesis, Ankara University, Graduate School of Biotechnology, Ankara, 168p.
  • Barakat, A.A., Hussein, B.A., Awad, N.A., Soliman, M.H. (2019). Evaluation of the two rootstocks (SO4 and Freedom) for the salt stress in vitro conditions. Plant Archives, 19(2), 500-507. Retrieved from https://www.researchgate.net/publication
  • Barton, C.J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry, 20(11), 1068-1073. Doi: https://doi.org/10.1021/ac60023a024
  • Battany, M. (2004). Grape notes:Salinity management for drought years. University of California Cooperative Extension. Retrieved from https://cesanluisobispo.ucanr.edu/news
  • Bonomelli, C., Ruiz, R. (2010). Effects of foliar and soil calcium application on yield and quality of table grape cv. ‘Thompson Seedless’. Journal of Plant Nutrition, 33(3), 299–314. Doi: https://doi.org/10.1080/01904160903470364
  • Boscaiu, M., Lull, C., Lidon, A., Bautista, I., Donat, P., Mayoral, O., Vicente, O. (2008). Plant responses to abiotic stress in their natural habitats. Bulletin UASVM Horticulture, 65(1), 53-58. Doi: http://dx.doi.org/10.15835/buasvmcnhort:458
  • Çelik, S. (2011). Bağcılık (Ampeloloji) Cilt:1. Avcı Ofset, İstanbul, Turkey, 428p, (in Turkish).
  • Dag, A., Ben-Gal, A., Goldberger, S., Yermiyahu, U., Zipori, I., Or, E., David, I., Netzer, Y., Kerem, Z. (2015). Sodium and chloride distribution in grapevines as a function of rootstock and irrigation water salinity. American Journal of Enology and Viticulture, 66(1), 80-84. Doi: https://doi.org/10.5344/ajev.2014.14019
  • Dardeniz, A., Müftüoğlu, N.M., Altay, H. (2006). Determination of salt tolerance of some american grape rootstocks. Bangladesh Journal of Botany, 35(2), 143-150. Retrieved from https://www.researchgate.net/publicatio
  • Desmukh, M.R., Karkampar, S.P., Patil, S.G. (2003). Screening of grape rootstocks for their salinity tolerance. Journal of Maharashtra Agricultural Universities, 28(2), 122-124.
  • Desouky, I.M., Shaltout, A.D., Laila, F.H., Shahin, M.F.M., El-Hady, E.S. (2015). Salinity tolerance of some grapevine cultivars as affected by salt creek and freedom rootstocks. Middle East Journal of Agriculture Research, 4(1), 112-122. Retrieved from https://www.curresweb.com/mejar
  • Edriss, M.H., Baghdad, G.A., Abdrabboh, G.A., Abdel Aziz, H.F. (2016). In vitro responses of some grape rootstocks to salt stress. 3. International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Sharm El-Sheikh, 5-9 April 2016, Egypt, 1-8p. Retrieved from https://www.researchgate.net/profile/Hosny
  • Esfandiari, E., Pourmohammad, A. (2013). Evaluation of the salinity effects on some physiological and biochemical characteristics of two wheat cultivars. YYU Journal of Agricultural Science, 23(2), 141-148. Retrieved from https://dergipark.org.tr/en/pub
  • Fisarakis, I., Nikolaou, N., Tsikalas, P., Therios, I., Stavrakas, D. (2005). Effect of salinity and rootstock on concentration of potassium, calcium, magnesium, phosphorus, and nitrate–nitrogen in Thompson seedless grapevine. Journal of Plant Nutrition, 27(12), 2117-2134. Doi: http://dx.doi.org/10.1081/PLN-200034662
  • Fozouni, M., Abbaspour, N., Baneh, H.D. (2012a). Short term response of grapevine grown hydroponically to salinity:mineral composition and growth parameters. Vitis, 51(3), 95-101. Retrieved from https://www.researchgate.net/publication/258
  • Fozouni, M., Abbaspour, N., Baneh, H.D. (2012b). Leaf water potential, photosynthetic pigment and compatible solutes alterations in four grape cultivars under salinity. Vitis, 51(4), 147-152. Doi: https://doi.org/10.5073/vitis.2012.51.147-152
  • Haider, M.S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. Doi: https://doi.org/10.1016/j.envexpbot.2019.03
  • Hamrouni, L., Abdallah, F.B., Abdelly, C., Ghorbel, A. (2008). In vitro culture:A simple and efficient way for salt-tolerant grapevine genotype selection. Plant Biology and Pathology, Comptes Rendus Biologies, 33, 152-163. Doi: https://doi.org/10.1016/j.crvi.2007.11.002
  • Hao, X., Jiao, B., Liu, Z., Wang, X., Wang, J., Zhang, J., Wang, Q., Xu, Y., Wang, Q. (2021). Crosstalk between grapevine leafroll-associate virus-3 (GLRaV-3) and NaCl- induced salt stress in vitro cultures of the red grape ‘Cabernet Sauvignon’. Plant Cell Tissue and Organ Culture, 144(3), 1-12. Doi: https://doi.org/10.1007/s11240-020-01987-z
  • Hepaksoy, S., Ben-Asher, J., Molach, Y., David, I., Sagih, M., Bravdo, B. (2006). Grapevine irrigation with saline water: Effect of rootstocks on quality and yield of Cabernet Sauvignon. Journal of Plant Nutrition, 29(5), 783-795. Doi: https://doi.org/10.1080/01904160600649153
  • Kacar, B., Katkat, A.V., Öztürk, Ş. (2006). Bitki fizyolojisi. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti, Ankara, Turkey, 563p, (in Turkish).
  • Kıran, S., Kuşvuran, Ş., Özkay, F., Özgün, Ö., Sönmez, K., Özbek, H., Ellialtıoğlu, Ş.Ş. (2015). Comparison of development of some eggplant rootstock in the salinity stress conditions. International Journal of Agricultural and Natural Sciences (IJANS), 8(1), 20-30. Retrieved from http://www.ijans.org/index.php/ijans/article
  • Kök, D. (2012). Impacts of different salicylic acid doses on salinity tolerance of grapevine rootstocks. Namık Kemal University, Journal of Tekirdag Agricultural Faculty, 9(2), 32-40. Retrieved from https://dergipark.org.tr/en/pub/jotaf
  • Lo’ay, A.A., El-Ezz, S.F.A. (2021). Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Scientia Horticulturae, 275, 109704. Doi: https://doi.org/10.1016/j.scienta.2020.109704
  • Mahajan, S., Tuteja, N. (2005). Cold, salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics, 444(2), 139–158. Doi: https://doi.org/10.1016/j.abb.2005.10.018
  • Meşe, N., Tangolar, S. (2019). Determination of drought resistance of some American vine rootstocks using polyethylene glycol in vitro. YYU Journal of Agricultural Science, 29(3), 466-475. Doi: http://dx.doi.org/10.29133/yyutbd.559174
  • Mohammadkhani, N., Abbaspour, N. (2018). Absorption kinetics and efflux of chloride and sodium in the roots of four grape genotypes (Vitis L.) differing in salt tolerance. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1779-1793. Doi: https://dx.doi.org/10.1007/s40995-017
  • Mohammadkhani, N., Heidari, R., Abbaspour, N., Rahmani, F. (2013). Comparative study of salinity effects on ionic balance and compatible solutes in nine Iranian table grape (Vitis vinifera L.) genotypes. Journal International des Sciences de la Vigne et du Vin, 47(2), 99-114. Doi: http://dx.doi.org/10.20870/oeno-one.2013
  • Müftüoğlu, N.M., Dardeniz, A., Sungur, A., Altay, H. (2006). Determination of salt tolerance of some grape varieties. Selçuk University, Journal of Agriculture Faculty, 20(40), 37-42. Retrieved from https://docplayer.biz.tr/7035020
  • Munns, R. (2005). Genes and salt tolerance:Bringing them together. New Phytologist, 167(3), 645–663. Doi: https://doi.org/10.1111/j.1469
  • Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. Doi: https://doi.org/10.1111/j.1399
  • Najafi, F., Khavari-Nejad, R.A., Rastgar-Jazii, F., Sticklen, M. (2007). Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pakistan Journal of Biological Sciences, 10(16), 2752-2755. Doi: https://doi.org/10.3923/pjbs.2007.2752.2755
  • Patil, S., Shinde, M., Prashant, R., Kadoo, N., Upadhyay, A., Gupta, V. (2020). Comparative proteomics unravels the differences in salt stress response of own-rooted and 110R grafted ‘Thompson Seedless’ grapevines. Journal of Proteome Research, 19, 583-599. Doi: https://doi.org/10.1021/acs.jproteome.9b0042
  • Popescu, C.F., Bejan, C., Dumitrica, R.N., Dejeu, L.C., Nedelea, G. (2015). Rootstocks and wild grapevines responses to salinity. Vitis, 54, 197-201. Doi: https://doi.org/10.5073/vitis.2015.54.special
  • Salem, A.T., Abdel-Aal, Y.A., Abdel-Mohsen, M.A., Yasin, W.H. (2011). Tolerance of ‘Flame Seedless’ grapes on own root and grafted to irrigation with saline solutions. Journal of Horticultural Science and Ornamental Plants, 3(3), 207-219. Retrieved from http://idosi.org/jhsop/3(3)11/
  • Singh, S.K., Sharma, H.C., Goswami, A.M., Datta, S.P., Singh, S.P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum, 43(2), 283-286. Doi: https://doi.org/10.1023/A:1002720714781
  • Sivritepe, N., Eriş, A. (1999). Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology, 23, 473-485. Retrieved from https://www.researchgate.net/publicatio
  • Stevens, R.M., Harvey, G., Davies, G. (1996). Separating the effects of foliar and root salt uptake on growth and mineral composition of four grapevine cultivars on their own roots and on ‘Ramsey’ rootstock. Journal of the American Society for Horticultural Science, 121, 569–575. Doi: http://dx.doi.org/10.21273/JASHS.121.3.569
  • Storey, R., Schachtman, D.P., Thomas, M.R. (2003). Root structure and cellular chloride, sodium and potassium distrubution in salinized grapevines. Plant, Cell and Environment, 26, 789-800. Doi: https://doi.org/10.1046/j.1365
  • Tangolar, S., Ergenoğlu, F. (1989). Değişik anaçların erkenci bazı üzüm çeşitlerinde yaprakların mineral besin maddesi ve çubukların karbonhidrat içerikleri üzerine etkisi. Doğa Türk Tarım ve Ormancılık Dergisi, 13(3b), 1267-1283, (in Turkish).
  • Troncoso, A., Matte, C., Cantos, M., Lavee, S. (1999). Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties. Vitis, 38(2), 55-60. Doi: https://doi.org/10.5073/vitis.1999.38.55-60
  • Turhan, E., Dardeniz, A., Müftüoğlu, N.M. (2005). Determining the tolerances to salinity stress of some American grapevine rootstocks. Journal Bahçe, 34(2), 11-19. Retrieved from https://www.researchgate.net/publication/295
  • Upadhyay, A., Gaonkar, T., Upadhyay, A.K., Jogaiah, S., Shinde, M.P., Kadoo, N.Y., Gupta, V.S. (2018). Global transcriptome analysis of grapevine (Vitis Vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. ‘Thompson Seedless’. Plant Physiology and Biochemistry, 129, 168−179. Doi: https://doi.org/10.1016/j.plaphy.2018.05.032
  • Uyar, H. (2016). Salt tolerance of ‘Hamburg Misketi’ (V. Vinifera L.) and ‘Isabella’ (V. Labrusca) grape cultivars. Master Thesis, Ordu University, Institute of Natural and Applied Sciences, Ordu, 62p.
  • Xiucai, F., Chonghuai, L., Xing, P., Jingnan, G., Min, L. (2004). Evaluation of salt tolerance of grape rootstocks under hydroponic culture conditions. Journal of Fruit Science, 2. Retrieved from https://en.cnki.com.cn/Article
  • Zhani, K., Elouer, M.A., Aloui, H., Hannachi, C. (2012). Selection of a salt-tolerant Tunisian cultivar of chili pepper (Capsicum frutescens). Eurasian Journal of Biosciences, 6, 47-59. Doi: http://dx.doi.org/10.5053/ejobios.2012.6.0.6
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Kaan Fethi Kaya 0000-0002-8303-6628

Serpil Tangolar 0000-0002-5563-1972

Proje Numarası FYL-2018-10086
Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 5 Eylül 2021
Kabul Tarihi 25 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 4

Kaynak Göster

APA Kaya, K. F., & Tangolar, S. (2021). Determination of morphological responses and plant nutrient preferences of some vine rootstocks grown under in vitro salt stress conditions. International Journal of Agriculture Environment and Food Sciences, 5(4), 616-627. https://doi.org/10.31015/jaefs.2021.4.22

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27