Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 4, 606 - 615, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.21

Öz

Kaynakça

  • Adaskaveg, J. E., Förster, H., Chen, D., & Nguyen, K. A. (2021). Integration of postharvest fungicides and fruit sanitation treatments to optimize decay control and address food safety concerns. In Postharvest Pathology (pp. 153-161). Springer, Cham. https://doi.org/10.1007/978-3-030-56530-5_10
  • Atress, A.S.H., El-Mogy, M.M., Aboul-Anean, H.E., & Alsaniu, B.W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science and Ornamental Plants 2: 88-97.
  • Caleb, O. J., Wegner, G., Rolleczek, C., Herppich, W. B., Geyer, M., & Mahajan, P. V. (2016). Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’strawberry. Scientia Horticulturae, 210, 150-157. https://doi.org/10.1016/j.scienta.2016.07.021
  • Carvalho, I. T., Estevinho, B. N., & Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products–a review. International journal of cosmetic science, 38(2), 109-119. https://doi.org/10.1111/ics.12232
  • Euloge, S. A., Kouton, S., Dahouenon-Ahoussi, E., Sohounhloue, D. C. K., & Soumanou, M. M. (2012). Antifungal activity of Ocimum canum essential oil against toxinogenic fungi isolated from peanut seeds in post-harvest in Benin. International Research Journal of Biological Sciences, 1(7), 20-26.
  • Fadli, M., Saad, A., Sayadi, S., Chevalier, J., Mezrioui, N. E., Pagès, J. M., & Hassani, L. (2012). Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine, 19(5), 464-471. https://doi.org/10.1016/j.phymed.2011.12.003
  • Gumus, T. (2010). Determination of the changes of antifungal properties of Satureja hortensis, Thymus vulgaris and Thymbra spicata exposed to gamma irradiation. Radiation Physics and Chemistry 79(1): 109-114. https://doi.org/10.1016/j.radphyschem.2009.07.025
  • Hao, W., Li, H., Hu, M., Yang, L., & Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology, 59(3), 316-323. https://doi.org/10.1016/j.postharvbio.2010.10.002
  • Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H. J., Jiang, D. H., & Huang, H. C. (2011). Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101(7), 859-869. https://doi.org/10.1094/PHYTO-09-10-0255
  • Huang, Q., Yang, R., Chen, C., Wan, C., & Kahramanoğlu, İ. (2021). Postharvest Hot Air Treatment to Maintain Fruit Quality of Nanfeng Mandarins During Storage. International Journal of Agriculture Forestry and Life Sciences, 5(1), 122-128.
  • Kahramanoğlu, İ. (2019). Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Scientia Horticulturae 256: 108527. https://doi.org/10.1016/j.scienta.2019.05.054
  • Kahramanoğlu, İ., Okatan, V., & Wan, C. (2020). Biochemical composition of propolis and its efficacy in maintaining postharvest storability of fresh fruits and vegetables. Journal of Food Quality, 8869624. https://doi.org/10.1155/2020/8869624
  • Karadağ, M.K., Koyuncu, M., Atalar, M.N., & Abdülmelik, A.R.A.S. (2021). Determination of Volatile Organic Compounds of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Ginger (Zingiber officinale) Plants using SPME/GC-MS. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14(1): 41-49. https://doi.org/10.18185/erzifbed.801731
  • Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2016). Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food bioscience, 13, 69-75. https://doi.org/10.1016/j.fbio.2015.12.008
  • Koch, S., Epp, A., Lohmann, M., & Böl, G. F. (2017). Pesticide residues in food: attitudes, beliefs, and misconceptions among conventional and organic consumers. Journal of Food Protection, 80(12), 2083-2089. https://doi.org/10.4315/0362-028X.JFP-17-104
  • Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., & Ercisli, S. (2016). Antifungal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chemistry & biodiversity, 13(1), 77-84. https://doi.org/10.1002/cbdv.201500018
  • Kurubas, M. S., Maltas, A. S., Dogan, A., Kaplan, M., & Erkan, M. (2019). Comparison of organically and conventionally produced Batavia type lettuce stored in modified atmosphere packaging for postharvest quality and nutritional parameters. Journal of the Science of Food and Agriculture, 99(1), 226-234. https://doi.org/10.1002/jsfa.9164
  • Moazeni, M., Davari, A., Shabanzadeh, S., Akhtari, J., Saeedi, M., Mortyeza-Semnani, K., Abastabar, M., Nabili, M., Moghadam, F.H., Roohi, B., Kelidari, M., & Nokhodchi, A. (2021). In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine, 28, 100452. https://doi.org/10.1016/j.hermed.2021.100452
  • Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015a). The control of Botrytis fruit rot in strawberry using combined treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil. Journal of Food Science and Technology, 52(11), 7441-7448. https://doi.org/10.1007/s13197-015-1871-7
  • Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015b). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative food science & emerging technologies, 28, 73-80. https://doi.org/10.1016/j.ifset.2014.12.011
  • Mpho, M., Sivakumar, D., Sellamuthu, P. S., & Bautista‐Baños, S. (2013). Use of lemongrass oil and modified atmosphere packaging on control of anthracnose and quality maintenance in avocado cultivars. Journal of Food Quality, 36(3), 198-208. https://doi.org/10.1111/fjq.12027
  • Mukherjee, B., Banerjee, S., Mondal, L., Chakraborty, S., Chanda, D., & Perera, J. A. C. (2020). Bioactive flavonoid apigenin and its nanoformulations: a promising hope for diabetes and cancer. In Nanomedicine for Bioactives (pp. 367-382). Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_131111/jfq.12027
  • Nor, S.M., & Ding, P. (2020). Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review. Food Research International: 109208. https://doi.org/10.1016/j.foodres.2020.109208
  • Paris, M. J., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2020). Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. Journal of Food Engineering, 282, 110024. https://doi.org/10.1016/j.jfoodeng.2020.110024
  • Parvez, S., & Wani, I. A. (2018). Postharvest biology and technology of strawberry. In Postharvest Biology and Technology of Temperate Fruits (pp. 331-348). Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_14
  • Pavinatto, A., de Almeida Mattos, A. V., Malpass, A. C. G., Okura, M. H., Balogh, D. T., & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International journal of biological macromolecules, 151, 1004-1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076
  • Sengun, I.Y., Yucel, E., Ozturk, B., & Kilic, G. (2021) Chemical compositions, total phenolic contents, antimicrobial and antioxidant activities of the extract and essential oil of Thymbra spicata L. growing wild in Turkey. Journal of Food Measurement and Characterization 15(1): 386-393. https://doi.org/10.1007/s11694-020-00639-2
  • Skinner, J. (1997). Experiments in Chemistry, Measuring the amount of vitamin C in fruit drinks. In: Microscale chemistry (Ed. Skinner J.). Royal Society of Chemistry, 67p.
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. https://doi.org/10.3390/ijms161024673
  • Stupar, M., Grbić, M. L., Džamić, A., Unković, N., Ristić, M., Jelikić, A., & Vukojević, J. (2014). Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South African Journal of Botany, 93, 118-124. https://doi.org/10.1016/j.sajb.2014.03.016
  • Thomidis, T., & Filotheou, A. (2016). Evaluation of five essential oils as bio-fungicides on the control of Pilidiella granati rot in pomegranate. Crop Protection, 89, 66-71. https://doi.org/10.1016/j.cropro.2016.07.002
  • Usanmaz, S. (2019). Effects of different propagation methods on the strawberry cv. ‘Florida Fortuna’ yield gown under low tunnel. International Journal of Agriculture Environment and Food Sciences, 3(4), 257-264. https://doi.org/10.31015/jaefs.2019.4.10
  • Velázquez-Nuñez, M. J., Avila-Sosa, R., Palou, E., & López-Malo, A. (2013). Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31(1), 1-4. https://doi.org/10.1016/j.foodcont.2012.09.029
  • Wan, C., Kahramanoğlu, İ., & Okatan, V. (2021). Application of plant natural products for the management of postharvest diseases in fruits. Folia Horticulturae, 33(1), 203-215. https://doi.org/10.2478/fhort-2021-0016
  • Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J.A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8(5): 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  • Xu, Y., Wei, J., Wei, Y., Han, P., Dai, K., Zou, X., Jiang, S., Xu, F., Wang, H., Sun, J. & Shao, X. (2021). Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola. Postharvest Biology and Technology, 175, 111474. https://doi.org/10.1016/j.postharvbio.2021.111474

Impacts of Lavandula angustifolia Mill. and Thymbra spicata L. essential oils on postharvest gray mold of strawberries

Yıl 2021, Cilt: 5 Sayı: 4, 606 - 615, 15.12.2021
https://doi.org/10.31015/jaefs.2021.4.21

Öz

Antifungal activities of two essential oils (EOs), derived from the Lavandula angustifolia L. and Thymbra spicata L. plant leaves were tested in current study against two isolates (M1-5 and M3-5) of Botrytis cinerea in Potato Dextrose Agar (PDA). These studies were performed in vitro and a further in vivo test with vapor contact application of the EOs was performed with strawberry fruits to confirm the antifungal activities in postharvest storage. In vitro studies were conducted with four different application doses (0.25, 0.50, 1.00 and 2.00 mL L-1) of both EOs with poisoned food technique. The highest dose (2.00 mL L-1) of L. angustifolia had a 92.50% mycelial growth inhibition on M1-5, where the same dose of same oil had 0.00% mycelial growth inhibition on M3-5. On the other hand, the highest dose (2.00 mL L-1) of T. spicata had 16.76% and 51.18% of mycelial growth inhibition on M1-5 and M3-5, respectively. The lower doses had less or no antifungal activity, thus only the highest doses were tested in the consecutive in vivo studies. Results suggested that both of the EOs had moderate impact on the prevention of disease severity at strawberry cv. Camarosa fruits, inoculated with M1-5 and M3-5 isolates. The EOs were also noted to have a significant influence on the prevention of the weight loss and loss of soluble solids concentration. Results suggested that the vapor contact application of L. angustifolia and T. spicata essential oils have potential to be alternative to synthetic fungicides for controlling gray mold in strawberry fruits caused by B. cinerea.

Kaynakça

  • Adaskaveg, J. E., Förster, H., Chen, D., & Nguyen, K. A. (2021). Integration of postharvest fungicides and fruit sanitation treatments to optimize decay control and address food safety concerns. In Postharvest Pathology (pp. 153-161). Springer, Cham. https://doi.org/10.1007/978-3-030-56530-5_10
  • Atress, A.S.H., El-Mogy, M.M., Aboul-Anean, H.E., & Alsaniu, B.W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science and Ornamental Plants 2: 88-97.
  • Caleb, O. J., Wegner, G., Rolleczek, C., Herppich, W. B., Geyer, M., & Mahajan, P. V. (2016). Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’strawberry. Scientia Horticulturae, 210, 150-157. https://doi.org/10.1016/j.scienta.2016.07.021
  • Carvalho, I. T., Estevinho, B. N., & Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products–a review. International journal of cosmetic science, 38(2), 109-119. https://doi.org/10.1111/ics.12232
  • Euloge, S. A., Kouton, S., Dahouenon-Ahoussi, E., Sohounhloue, D. C. K., & Soumanou, M. M. (2012). Antifungal activity of Ocimum canum essential oil against toxinogenic fungi isolated from peanut seeds in post-harvest in Benin. International Research Journal of Biological Sciences, 1(7), 20-26.
  • Fadli, M., Saad, A., Sayadi, S., Chevalier, J., Mezrioui, N. E., Pagès, J. M., & Hassani, L. (2012). Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine, 19(5), 464-471. https://doi.org/10.1016/j.phymed.2011.12.003
  • Gumus, T. (2010). Determination of the changes of antifungal properties of Satureja hortensis, Thymus vulgaris and Thymbra spicata exposed to gamma irradiation. Radiation Physics and Chemistry 79(1): 109-114. https://doi.org/10.1016/j.radphyschem.2009.07.025
  • Hao, W., Li, H., Hu, M., Yang, L., & Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology, 59(3), 316-323. https://doi.org/10.1016/j.postharvbio.2010.10.002
  • Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H. J., Jiang, D. H., & Huang, H. C. (2011). Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101(7), 859-869. https://doi.org/10.1094/PHYTO-09-10-0255
  • Huang, Q., Yang, R., Chen, C., Wan, C., & Kahramanoğlu, İ. (2021). Postharvest Hot Air Treatment to Maintain Fruit Quality of Nanfeng Mandarins During Storage. International Journal of Agriculture Forestry and Life Sciences, 5(1), 122-128.
  • Kahramanoğlu, İ. (2019). Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Scientia Horticulturae 256: 108527. https://doi.org/10.1016/j.scienta.2019.05.054
  • Kahramanoğlu, İ., Okatan, V., & Wan, C. (2020). Biochemical composition of propolis and its efficacy in maintaining postharvest storability of fresh fruits and vegetables. Journal of Food Quality, 8869624. https://doi.org/10.1155/2020/8869624
  • Karadağ, M.K., Koyuncu, M., Atalar, M.N., & Abdülmelik, A.R.A.S. (2021). Determination of Volatile Organic Compounds of Artemisia campestris subsp. glutinosa, Lavandula angustifolia Mill., and Ginger (Zingiber officinale) Plants using SPME/GC-MS. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14(1): 41-49. https://doi.org/10.18185/erzifbed.801731
  • Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2016). Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food bioscience, 13, 69-75. https://doi.org/10.1016/j.fbio.2015.12.008
  • Koch, S., Epp, A., Lohmann, M., & Böl, G. F. (2017). Pesticide residues in food: attitudes, beliefs, and misconceptions among conventional and organic consumers. Journal of Food Protection, 80(12), 2083-2089. https://doi.org/10.4315/0362-028X.JFP-17-104
  • Kordali, S., Usanmaz, A., Cakir, A., Komaki, A., & Ercisli, S. (2016). Antifungal and herbicidal effects of fruit essential oils of four Myrtus communis genotypes. Chemistry & biodiversity, 13(1), 77-84. https://doi.org/10.1002/cbdv.201500018
  • Kurubas, M. S., Maltas, A. S., Dogan, A., Kaplan, M., & Erkan, M. (2019). Comparison of organically and conventionally produced Batavia type lettuce stored in modified atmosphere packaging for postharvest quality and nutritional parameters. Journal of the Science of Food and Agriculture, 99(1), 226-234. https://doi.org/10.1002/jsfa.9164
  • Moazeni, M., Davari, A., Shabanzadeh, S., Akhtari, J., Saeedi, M., Mortyeza-Semnani, K., Abastabar, M., Nabili, M., Moghadam, F.H., Roohi, B., Kelidari, M., & Nokhodchi, A. (2021). In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. Journal of Herbal Medicine, 28, 100452. https://doi.org/10.1016/j.hermed.2021.100452
  • Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015a). The control of Botrytis fruit rot in strawberry using combined treatments of Chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil. Journal of Food Science and Technology, 52(11), 7441-7448. https://doi.org/10.1007/s13197-015-1871-7
  • Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015b). Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative food science & emerging technologies, 28, 73-80. https://doi.org/10.1016/j.ifset.2014.12.011
  • Mpho, M., Sivakumar, D., Sellamuthu, P. S., & Bautista‐Baños, S. (2013). Use of lemongrass oil and modified atmosphere packaging on control of anthracnose and quality maintenance in avocado cultivars. Journal of Food Quality, 36(3), 198-208. https://doi.org/10.1111/fjq.12027
  • Mukherjee, B., Banerjee, S., Mondal, L., Chakraborty, S., Chanda, D., & Perera, J. A. C. (2020). Bioactive flavonoid apigenin and its nanoformulations: a promising hope for diabetes and cancer. In Nanomedicine for Bioactives (pp. 367-382). Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_131111/jfq.12027
  • Nor, S.M., & Ding, P. (2020). Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review. Food Research International: 109208. https://doi.org/10.1016/j.foodres.2020.109208
  • Paris, M. J., Ramírez-Corona, N., Palou, E., & López-Malo, A. (2020). Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. Journal of Food Engineering, 282, 110024. https://doi.org/10.1016/j.jfoodeng.2020.110024
  • Parvez, S., & Wani, I. A. (2018). Postharvest biology and technology of strawberry. In Postharvest Biology and Technology of Temperate Fruits (pp. 331-348). Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_14
  • Pavinatto, A., de Almeida Mattos, A. V., Malpass, A. C. G., Okura, M. H., Balogh, D. T., & Sanfelice, R. C. (2020). Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International journal of biological macromolecules, 151, 1004-1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076
  • Sengun, I.Y., Yucel, E., Ozturk, B., & Kilic, G. (2021) Chemical compositions, total phenolic contents, antimicrobial and antioxidant activities of the extract and essential oil of Thymbra spicata L. growing wild in Turkey. Journal of Food Measurement and Characterization 15(1): 386-393. https://doi.org/10.1007/s11694-020-00639-2
  • Skinner, J. (1997). Experiments in Chemistry, Measuring the amount of vitamin C in fruit drinks. In: Microscale chemistry (Ed. Skinner J.). Royal Society of Chemistry, 67p.
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706. https://doi.org/10.3390/ijms161024673
  • Stupar, M., Grbić, M. L., Džamić, A., Unković, N., Ristić, M., Jelikić, A., & Vukojević, J. (2014). Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South African Journal of Botany, 93, 118-124. https://doi.org/10.1016/j.sajb.2014.03.016
  • Thomidis, T., & Filotheou, A. (2016). Evaluation of five essential oils as bio-fungicides on the control of Pilidiella granati rot in pomegranate. Crop Protection, 89, 66-71. https://doi.org/10.1016/j.cropro.2016.07.002
  • Usanmaz, S. (2019). Effects of different propagation methods on the strawberry cv. ‘Florida Fortuna’ yield gown under low tunnel. International Journal of Agriculture Environment and Food Sciences, 3(4), 257-264. https://doi.org/10.31015/jaefs.2019.4.10
  • Velázquez-Nuñez, M. J., Avila-Sosa, R., Palou, E., & López-Malo, A. (2013). Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31(1), 1-4. https://doi.org/10.1016/j.foodcont.2012.09.029
  • Wan, C., Kahramanoğlu, İ., & Okatan, V. (2021). Application of plant natural products for the management of postharvest diseases in fruits. Folia Horticulturae, 33(1), 203-215. https://doi.org/10.2478/fhort-2021-0016
  • Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J.A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8(5): 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  • Xu, Y., Wei, J., Wei, Y., Han, P., Dai, K., Zou, X., Jiang, S., Xu, F., Wang, H., Sun, J. & Shao, X. (2021). Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola. Postharvest Biology and Technology, 175, 111474. https://doi.org/10.1016/j.postharvbio.2021.111474
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

İbrahim Kahramanoglu 0000-0002-6074-6395

Tuba Genç Kesimci 0000-0003-2022-0193

Ayşe Usanmaz Bozhüyük 0000-0003-2450-6850

Ramazan Gürbüz 0000-0003-3558-9823

Harun Alptekin 0000-0001-9319-311X

Yayımlanma Tarihi 15 Aralık 2021
Gönderilme Tarihi 2 Eylül 2021
Kabul Tarihi 8 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 4

Kaynak Göster

APA Kahramanoglu, İ., Genç Kesimci, T., Usanmaz Bozhüyük, A., Gürbüz, R., vd. (2021). Impacts of Lavandula angustifolia Mill. and Thymbra spicata L. essential oils on postharvest gray mold of strawberries. International Journal of Agriculture Environment and Food Sciences, 5(4), 606-615. https://doi.org/10.31015/jaefs.2021.4.21

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27