Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of appropriate grafting method and plant applications to increase grafting success in cucumber

Yıl 2022, Cilt: 6 Sayı: 2, 275 - 284, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.11

Öz

In grafted seedling production, in addition to the compatibility and performance of the rootstock, the correct selection of the grafting method and the treatments to the rootstocks nd scion are effective on the success of the graft. A three-stage trial was conducted to determine the appropriate grafting method, the effect of root cutting, and some treatments on grafting success in cucumber (Cucumis sativus L.). In Experiment I, it was aimed to determine the most appropriate grafting technique for cucumber by using single cotyledon, hole insertion, and tube grafting techniques. The effect of rooted and rootless grafting on grafting success and seedling growth in Experiment II was determined by using the most appropriate grafting technique determined in Experiment I. In experiment III, the effect of sucrose, IBA (Indole-3-butyric acid) and antitranspirant applications on rootstocks on the success of grafting was determined. The graft success rate of the grafted plants was evaluated 14 days after grafting. While the most appropriate grafting technique was the single cotyledon grafting method with a success rate of 76%, the grafting success rate was 67.8% and 55.6% in hole insertion and tube grafting methods, respectively. The effect of grafting with rooted or rootless rootstock on grafting success was found to be insignificant. The highest stem fresh and dry weight were recorded in rooted grafting with 28.00 and 2.30 g/plant, respectively. The highest root fresh and dry weights were found in rooted grafting with 19.30 and 1.93 g/plant, respectively. In Experiment III, the highest grafting success was obtained from sucrose+antitranspirant (98.82%) and sucrose+antitranspirant+IBA (97.65%) applications, respectively. The lowest grafting success was determined in antitranspirant (74.86%) and control (78.24%) applications. According to the results te highest grafting success was achieved by using rooted rootstocks and single cotyledon grafting method. In addition, the combined application of sucrose and antitranspirant and the triple combination of sucrose, antitranspirant, and IBA to rootstocks before grafting is recommended because they increase the success of grafting in cucumber.

Kaynakça

  • Ali, A. H., Abdelrahman, M., Radwan, U., El-Zayat, S., & El-Sayed, M. A. (2018). Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Applied Soil Ecology, 124, 155-162. Doi: https://doi.org/10.1016/j.apsoil.2017.11.004.
  • Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127(2), 119-126. Doi:https://doi.org/10.1016/j.scienta.2010.09.003.
  • Asahina, M., Iwai, H., Kikuchi, A., Yamaguchi, S., Kamiya, Y., Kamada, H., & Satoh, S. (2002). Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiology, 129(1), 201-210. Doi: https://doi.org/10.1104/pp.010886
  • Bhalerao, R. P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., & Sandberg, G. (2002). Shoot‐derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal, 29(3), 325-332. Doi: https://doi.org/10.1046/j.0960-7412.2001.01217.x
  • Bithell, S. L., Condè, B., Traynor, M., & Donald, E. C. (2013). Grafting for soilborne disease management in Australian vegetable production systems a review. Australasian Plant Pathology, 42(3), 329-336. Doi: 10.1007/s13313-012-0183-x.
  • Dabirian, S., & Miles, C. A. (2017). Increasing survival of splice-grafted watermelon seedlings using a sucrose application. HortScience, 52(4), 579-583. Doi: https://doi.org/10.21273/HORTSCI11667-16
  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., & King, S. R. (2008). Cucurbit grafting. Critical reviews in plant Sciences, 27(1), 50-74. Doi: https://doi.org/10.1080/07352680802053940
  • de Oliveira, M. M. T., Lu, S., Zurgil, U., Raveh, E., & Tel-Zur, N. (2021). Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. Plant Physiology and Biochemistry, 160, 94-105. Doi: https://doi.org/10.1016/j.plaphy.2021.01.013
  • Devi, P., DeVetter, L. W., Lukas, S., & Miles, C. (2021). Exogenous treatments to enhance splice-grafted watermelon survival. Horticulturae, 7(7), 197. Doi: https://doi.org/10.3390/horticulturae7070197
  • Devi, P., Lukas, S., & Miles, C. A. (2020). Fruit maturity and quality of splice-grafted and one-cotyledon grafted watermelon. HortScience, 55(7), 1090-1098. Doi: https://doi.org/10.21273/HORTSCI15045-20
  • Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A., & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of cucurbita rootstocks on vigour, survival and yield of grafted melons. J. Hortic. Sci. Biotechnol, 79 (3), 370-374. Doi: https://doi.org/10.1080/14620316.2004.11511775
  • Etehadnia, M., Waterer, D., De Jong, H., & Tanino, K. K. (2008). Scion and rootstock effects on ABA-mediated plant growth regulation and salt tolerance of acclimated and unacclimated potato genotypes. Journal of Plant Growth Regulation, 27(2), 125-140. Doi: https://doi.org/10.1007/s00344-008-9039-6
  • Fan, Y., Zhang, Y., Hess, F., Huang, B., & Chen, Z. (2020). Nutrient balance and soil changes in plastic greenhouse vegetable production. Nutrient Cycling in Agroecosystems, 117(1), 77-92. Doi: https://doi.org/10.1007/s10705-020-10057-x
  • FAO. (2020, 02.03.2022.). World and Turkey cucumber production list. http://www.fao.org/faostat/en/#data/QC
  • Grill, E., & Ziegler, H. (1998). A plant's dilemma. Science, 282(5387), 252-253.
  • Hamamoto, H., & Oda, M. (1997). Difference in elongation responses of cucumber and pumpkin hypocotyls to temperature. Journal of The Japanese Society For Horticultural Science, 65(4), 731-736. Doi: https://doi.org/10.2503/jjshs.65.731
  • Hetherington, A. M. (1998). Plant physiology: Spreading a drought warning. Current biology, 8(25), R911-R913.Doi: https://doi.org/10.1016/S0960-9822(98)00007-4
  • Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological research, 52. Doi: http://dx.doi.org/10.1186/s40659-019-0246-3.
  • Karaağaç, O. (2013). Karadeniz Bölgesi’nden Roplanan Kestane Kabağı (C. maxima) ve Bal Kabağı (C. moschata) Genotiplerinin Karpuza Anaçlık Potansiyellerinin Belirlenmesi [Doktora Tezi, Ondokuz Mayıs Üniversitesi]. Samsun. http://acikerisim.omu.edu.tr/xmlui/handle/20.500.12712/25289 (in Turkish).
  • Kümpers, B. M., & Bishopp, A. (2015). Plant grafting: making the right connections. Current biology, 25(10), R411-R413. Doi: https://doi.org/10.1016/j.cub.2015.03.055
  • Lee, J.-M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience, 29(4), 235-239. Doi: https://doi.org/10.21273/HORTSCI.29.4.235
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. Doi: http://dx.doi.org/10.1016/j.scienta.2010.08.003
  • Lee, J. M., & Oda, M. (2002). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61. Doi: https://doi.org/10.1002/9780470650851.ch2
  • Li, C., Bian, B., Gong, T., & Liao, W. (2018). Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. Journal of plant physiology, 229, 185-194. Doi: https://doi.org/10.1016/j.jplph.2018.07.012
  • Melnyk, C. W. (2017). Monitoring vascular regeneration and xylem connectivity in Arabidopsis thaliana. In Xylem (pp. 91-102). Springer. Doi: https://doi.org/10.1007/978-1-4939-6722-3_9
  • Memmott, F., & Hassell, R. (2009). Watermelon (Citrullus lanatus) grafting method to reduce labor cost by eliminating rootstock side shoots. IV International Symposium on Cucurbits 871. Doi: https://doi.org/10.17660/ActaHortic.2010.871.53
  • Nanda, A. K., & Melnyk, C. W. (2018). The role of plant hormones during grafting. Journal of plant research, 131(1), 49-58. Doi: https://doi.org/10.1007/s10265-017-0994-5
  • Nie, W., Gong, B., Chen, Y., Wang, J., Wei, M., & Shi, Q. (2018). Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Scientia Horticulturae, 235, 413-423. Doi: http://dx.doi.org/10.1016/j.scienta.2018.03.011
  • Nitzsche, P., Berkowitz, G. A., & Rabin, J. (1991). Development of a seedling-applied antitranspirant formulation to enhance water status, growth, and yield of transplanted bell pepper. Journal of the American Society for Horticultural Science, 116(3), 405-411. Doi: http://dx.doi.org/10.21273/JASHS.116.3.405 Oda, M. (1994). Effects of uniconazole and gibberellic acid application on elongation of hypocotyl and internodes in figleaf gourd for rootstock. JARQ. (Japan Agricultural Research Quarterly), 28(3), 195-199.ISSN: 00213551.
  • Oda, M. (1999). Grafting of vegetables to improve greenhouse production. In (Vol. 480, pp. 1-11). Food and Fertilizer Technology Center, Extension Bulletin: Taipei, Taiwan. Retrieved from https://www.fftc.org.tw/en/publications/main/1383
  • Oda, M., Dosai, M., Ikeda, H., & Furukawa, H. (2001). Causes of low survival in cucumber (Cucumis sativus L.) plants grafted onto pumpkin (Cucurbita moschata Duch.) rootstocks by horizontal-cut grafting at the center of the hypocotyl. Scientific Report of the Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University (Japan). ISSN: 1346-1575.
  • Oda, M., Tsuji, K., & Sasaki, H. (1993). Effect of hypocotyl morphology on survival rate and growth of cucumber seedlings grafted on Cucurbita spp. Japan Agricultural Research Quarterly, 26, 259-259. ISSN:00213551.
  • Ogata, T., Kabashima, Y., Shiozaki, S., & Horiuchi, S. (2005). Regeneration of the Vascular Bundle at the Graft Interface in Auto- and Heterografts with Juvenile Nucellar Seedlings of Satsuma Mandarin, Yuzu and Trifoliate Orange. Journal of the Japanese Society for horticultural science, 74 (3), 214-220. ISSN: 0013-7626.
  • Penny, M., Moore, K., & Lovell, P. (1976). The effects of inhibition of cotyledon photosynthesis on seedling development in Cucumis sativus L. Annals of Botany, 40(4), 815-824. Doi: http://dx.doi.org/10.1590/S0100-204X2005000600002
  • Phogat, V., Mallants, D., Cox, J., Šimůnek, J., Oliver, D., & Awad, J. (2020). Management of soil salinity associated with irrigation of protected crops. Agricultural Water Management, 227, 105-845. Doi: https://doi.org/10.1016/j.agwat.2019.105845
  • Pina, A., & Errea, P. (2005). A review of new advances in mechanism of graft compatibility–incompatibility. Scientia Horticulturae, 106(1), 1-11. Doi: http://dx.doi.org/10.1016/j.scienta.2005.04.003
  • Preece, J. E., & Read, P. E. (2005). The biology of horticulture: an introductory textbook. John Wiley & Sons. ISBN: 978-0-471-46579-9.
  • Procko, C., Crenshaw, C. M., Ljung, K., Noel, J. P., & Chory, J. (2014). Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiology, 165(3), 1285-1301. Doi: https://doi.org/10.1104/pp.114.241844
  • Rapaka, V. K., Faust, J. E., Dole, J. M., & Runkle, E. S. (2007). Diurnal carbohydrate dynamics affect postharvest ethylene responsiveness in portulaca (Portulaca grandiflora ‘Yubi Deep Rose’) unrooted cuttings. Postharvest biology and technology, 44(3), 293-299. Doi: https://doi.org/10.1016/j.postharvbio.2006.12.004
  • Rojas, L. P., & Riveros, F. B. (1999). Effect of grafting methods and seedling age on survival and development of grafted plants in melon (Cucumis melo). Agricultura Técnica, 61(3), 262-274. ISSN: 0365-2807.
  • Sakata, Y., Ohara, T., & Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. III International Symposium on Cucurbits 731. Doi: https://doi.org/10.17660/ActaHortic.2007.731.22
  • Sakata, Y., Ohara, T. and Sugiyama, M. (2007). The hıstory and present state of the graftıng of cucurbıtaceous vegetables ın Japan. Acta Hortic. 731, 159-170. DOI: https://doi.org/10.17660/ActaHortic.2007.731.22
  • Salisbury, F.B. and Ross, C.W. (1992) Plant Physiology, Hormones and Plant Regulators: Auxins and Gibberellins. 4th Edition, Wadsworth Publishing, Belmont, 357-381.
  • Sallaku, G., Sanden, H., Babaj, I., Kaciu, S., Balliu, A., & Rewald, B. (2019). Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Scientia Horticulturae, 243, 177-188. Doi: http://dx.doi.org/10.1016/j.scienta.2018.08.027
  • Singh, R. K., Singh, A., Zander, K. K., Mathew, S., & Kumar, A. (2021). Measuring successful processes of knowledge co-production for managing climate change and associated environmental stressors: Adaptation policies and practices to support Indian farmers. Journal of Environmental Management, 282, 111679.Doi: https://doi.org/10.1016/j.jenvman.2020.111679
  • SPSS. (2013). IBM SPSS Statistics 22.0 for Windows. In: Armonk, N.Y. (Packed programs).
  • Thomas-Barry, G., Martin, C. C. S., Lynch, M. D., Ramsubhag, A., Rouse-Miller, J., & Charles, T. C. (2021). Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Science of The Total Environment, 769, 145214. Doi: https://doi.org/10.1016/j.scitotenv.2021.145214
  • Ulaş, A., Aydın, A., Ulaş, F., & Yetişir, H. (2019). Contribution of roots to growth and physiology of watermelon grafted onto rooted and unrooted seedlings of various bottle gourd rootstocks. International Journal of Agriculture Environment and Food Sciences, 3(4), 211-216. Doi: https://doi.org/10.31015/jaefs.2019.4.2 (in Turkish).
  • Yang, Z.-C., Kubota, C., Chia, P.-L., & Kacira, M. (2012). Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Scientia Horticulturae, 136, 81-86. Doi: http://dx.doi.org/10.1016/j.scienta.2011.12.023
  • Yetişir, H. (2001). Karpuzda Aşılı Fide Kullanımının Bitki Büyümesi, Verim ve Meyve Kalitesi Üzerine Etkileri ile Aşı Yerinin Histolojik Açıdan İncelenmesi [Doktora Tezi, Çukurova Üniversitesi]. Adana,Turkiye. (in Turkish).
  • Yetişir, H. (2017). History and current status of grafted vegetables in Turkey. Chron Horticult, 57, 13-18.
  • Yetişir, H., Kurt, Ş., Sarı, N., & Tok, F. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon plant growth, graft compatibility, and resistance to fusarium. Turk. J. Agric. For., 31,1-8. Doi: http://dx.doi.org/10.3906/tar-1101-1716
  • Yetişir, H., & Sarı, N. (2004). Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For., 28, 231-237. ISSN: 1300-011X / 1303-6173.
  • Yetişir, H., Yarşi, G., & Sarı, N. (2004). Sebzelerde Aşılama. Bahçe, 33, 27-37. Retrieved from https://dergipark.org.tr/tr/pub/bahce/issue/3348/46302 (in Turkish).
  • Yıldız, S., & Balkaya, A. (2016). Tuza tolerant kabak anaçlarının hipokotil özellikleri ve hıyarla aşı uyuşum durumlarının belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(4), 538-546. Doi: https://doi.org/10.29133/yyutbd.282762 (in Turkish).
  • Zhang, T., Shi, Z., Zhang, X., Zheng, S., Wang, J., & Mo, J. (2020). Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 262, 109070. Doi: http://dx.doi.org/10.1016/j.scienta.2019.109070
Yıl 2022, Cilt: 6 Sayı: 2, 275 - 284, 15.06.2022
https://doi.org/10.31015/jaefs.2022.2.11

Öz

Kaynakça

  • Ali, A. H., Abdelrahman, M., Radwan, U., El-Zayat, S., & El-Sayed, M. A. (2018). Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Applied Soil Ecology, 124, 155-162. Doi: https://doi.org/10.1016/j.apsoil.2017.11.004.
  • Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127(2), 119-126. Doi:https://doi.org/10.1016/j.scienta.2010.09.003.
  • Asahina, M., Iwai, H., Kikuchi, A., Yamaguchi, S., Kamiya, Y., Kamada, H., & Satoh, S. (2002). Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiology, 129(1), 201-210. Doi: https://doi.org/10.1104/pp.010886
  • Bhalerao, R. P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., & Sandberg, G. (2002). Shoot‐derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal, 29(3), 325-332. Doi: https://doi.org/10.1046/j.0960-7412.2001.01217.x
  • Bithell, S. L., Condè, B., Traynor, M., & Donald, E. C. (2013). Grafting for soilborne disease management in Australian vegetable production systems a review. Australasian Plant Pathology, 42(3), 329-336. Doi: 10.1007/s13313-012-0183-x.
  • Dabirian, S., & Miles, C. A. (2017). Increasing survival of splice-grafted watermelon seedlings using a sucrose application. HortScience, 52(4), 579-583. Doi: https://doi.org/10.21273/HORTSCI11667-16
  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., & King, S. R. (2008). Cucurbit grafting. Critical reviews in plant Sciences, 27(1), 50-74. Doi: https://doi.org/10.1080/07352680802053940
  • de Oliveira, M. M. T., Lu, S., Zurgil, U., Raveh, E., & Tel-Zur, N. (2021). Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. Plant Physiology and Biochemistry, 160, 94-105. Doi: https://doi.org/10.1016/j.plaphy.2021.01.013
  • Devi, P., DeVetter, L. W., Lukas, S., & Miles, C. (2021). Exogenous treatments to enhance splice-grafted watermelon survival. Horticulturae, 7(7), 197. Doi: https://doi.org/10.3390/horticulturae7070197
  • Devi, P., Lukas, S., & Miles, C. A. (2020). Fruit maturity and quality of splice-grafted and one-cotyledon grafted watermelon. HortScience, 55(7), 1090-1098. Doi: https://doi.org/10.21273/HORTSCI15045-20
  • Edelstein, M., Burger, Y., Horev, C., Porat, A., Meir, A., & Cohen, R. (2004). Assessing the effect of genetic and anatomic variation of cucurbita rootstocks on vigour, survival and yield of grafted melons. J. Hortic. Sci. Biotechnol, 79 (3), 370-374. Doi: https://doi.org/10.1080/14620316.2004.11511775
  • Etehadnia, M., Waterer, D., De Jong, H., & Tanino, K. K. (2008). Scion and rootstock effects on ABA-mediated plant growth regulation and salt tolerance of acclimated and unacclimated potato genotypes. Journal of Plant Growth Regulation, 27(2), 125-140. Doi: https://doi.org/10.1007/s00344-008-9039-6
  • Fan, Y., Zhang, Y., Hess, F., Huang, B., & Chen, Z. (2020). Nutrient balance and soil changes in plastic greenhouse vegetable production. Nutrient Cycling in Agroecosystems, 117(1), 77-92. Doi: https://doi.org/10.1007/s10705-020-10057-x
  • FAO. (2020, 02.03.2022.). World and Turkey cucumber production list. http://www.fao.org/faostat/en/#data/QC
  • Grill, E., & Ziegler, H. (1998). A plant's dilemma. Science, 282(5387), 252-253.
  • Hamamoto, H., & Oda, M. (1997). Difference in elongation responses of cucumber and pumpkin hypocotyls to temperature. Journal of The Japanese Society For Horticultural Science, 65(4), 731-736. Doi: https://doi.org/10.2503/jjshs.65.731
  • Hetherington, A. M. (1998). Plant physiology: Spreading a drought warning. Current biology, 8(25), R911-R913.Doi: https://doi.org/10.1016/S0960-9822(98)00007-4
  • Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological research, 52. Doi: http://dx.doi.org/10.1186/s40659-019-0246-3.
  • Karaağaç, O. (2013). Karadeniz Bölgesi’nden Roplanan Kestane Kabağı (C. maxima) ve Bal Kabağı (C. moschata) Genotiplerinin Karpuza Anaçlık Potansiyellerinin Belirlenmesi [Doktora Tezi, Ondokuz Mayıs Üniversitesi]. Samsun. http://acikerisim.omu.edu.tr/xmlui/handle/20.500.12712/25289 (in Turkish).
  • Kümpers, B. M., & Bishopp, A. (2015). Plant grafting: making the right connections. Current biology, 25(10), R411-R413. Doi: https://doi.org/10.1016/j.cub.2015.03.055
  • Lee, J.-M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience, 29(4), 235-239. Doi: https://doi.org/10.21273/HORTSCI.29.4.235
  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105. Doi: http://dx.doi.org/10.1016/j.scienta.2010.08.003
  • Lee, J. M., & Oda, M. (2002). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61. Doi: https://doi.org/10.1002/9780470650851.ch2
  • Li, C., Bian, B., Gong, T., & Liao, W. (2018). Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. Journal of plant physiology, 229, 185-194. Doi: https://doi.org/10.1016/j.jplph.2018.07.012
  • Melnyk, C. W. (2017). Monitoring vascular regeneration and xylem connectivity in Arabidopsis thaliana. In Xylem (pp. 91-102). Springer. Doi: https://doi.org/10.1007/978-1-4939-6722-3_9
  • Memmott, F., & Hassell, R. (2009). Watermelon (Citrullus lanatus) grafting method to reduce labor cost by eliminating rootstock side shoots. IV International Symposium on Cucurbits 871. Doi: https://doi.org/10.17660/ActaHortic.2010.871.53
  • Nanda, A. K., & Melnyk, C. W. (2018). The role of plant hormones during grafting. Journal of plant research, 131(1), 49-58. Doi: https://doi.org/10.1007/s10265-017-0994-5
  • Nie, W., Gong, B., Chen, Y., Wang, J., Wei, M., & Shi, Q. (2018). Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Scientia Horticulturae, 235, 413-423. Doi: http://dx.doi.org/10.1016/j.scienta.2018.03.011
  • Nitzsche, P., Berkowitz, G. A., & Rabin, J. (1991). Development of a seedling-applied antitranspirant formulation to enhance water status, growth, and yield of transplanted bell pepper. Journal of the American Society for Horticultural Science, 116(3), 405-411. Doi: http://dx.doi.org/10.21273/JASHS.116.3.405 Oda, M. (1994). Effects of uniconazole and gibberellic acid application on elongation of hypocotyl and internodes in figleaf gourd for rootstock. JARQ. (Japan Agricultural Research Quarterly), 28(3), 195-199.ISSN: 00213551.
  • Oda, M. (1999). Grafting of vegetables to improve greenhouse production. In (Vol. 480, pp. 1-11). Food and Fertilizer Technology Center, Extension Bulletin: Taipei, Taiwan. Retrieved from https://www.fftc.org.tw/en/publications/main/1383
  • Oda, M., Dosai, M., Ikeda, H., & Furukawa, H. (2001). Causes of low survival in cucumber (Cucumis sativus L.) plants grafted onto pumpkin (Cucurbita moschata Duch.) rootstocks by horizontal-cut grafting at the center of the hypocotyl. Scientific Report of the Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University (Japan). ISSN: 1346-1575.
  • Oda, M., Tsuji, K., & Sasaki, H. (1993). Effect of hypocotyl morphology on survival rate and growth of cucumber seedlings grafted on Cucurbita spp. Japan Agricultural Research Quarterly, 26, 259-259. ISSN:00213551.
  • Ogata, T., Kabashima, Y., Shiozaki, S., & Horiuchi, S. (2005). Regeneration of the Vascular Bundle at the Graft Interface in Auto- and Heterografts with Juvenile Nucellar Seedlings of Satsuma Mandarin, Yuzu and Trifoliate Orange. Journal of the Japanese Society for horticultural science, 74 (3), 214-220. ISSN: 0013-7626.
  • Penny, M., Moore, K., & Lovell, P. (1976). The effects of inhibition of cotyledon photosynthesis on seedling development in Cucumis sativus L. Annals of Botany, 40(4), 815-824. Doi: http://dx.doi.org/10.1590/S0100-204X2005000600002
  • Phogat, V., Mallants, D., Cox, J., Šimůnek, J., Oliver, D., & Awad, J. (2020). Management of soil salinity associated with irrigation of protected crops. Agricultural Water Management, 227, 105-845. Doi: https://doi.org/10.1016/j.agwat.2019.105845
  • Pina, A., & Errea, P. (2005). A review of new advances in mechanism of graft compatibility–incompatibility. Scientia Horticulturae, 106(1), 1-11. Doi: http://dx.doi.org/10.1016/j.scienta.2005.04.003
  • Preece, J. E., & Read, P. E. (2005). The biology of horticulture: an introductory textbook. John Wiley & Sons. ISBN: 978-0-471-46579-9.
  • Procko, C., Crenshaw, C. M., Ljung, K., Noel, J. P., & Chory, J. (2014). Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiology, 165(3), 1285-1301. Doi: https://doi.org/10.1104/pp.114.241844
  • Rapaka, V. K., Faust, J. E., Dole, J. M., & Runkle, E. S. (2007). Diurnal carbohydrate dynamics affect postharvest ethylene responsiveness in portulaca (Portulaca grandiflora ‘Yubi Deep Rose’) unrooted cuttings. Postharvest biology and technology, 44(3), 293-299. Doi: https://doi.org/10.1016/j.postharvbio.2006.12.004
  • Rojas, L. P., & Riveros, F. B. (1999). Effect of grafting methods and seedling age on survival and development of grafted plants in melon (Cucumis melo). Agricultura Técnica, 61(3), 262-274. ISSN: 0365-2807.
  • Sakata, Y., Ohara, T., & Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. III International Symposium on Cucurbits 731. Doi: https://doi.org/10.17660/ActaHortic.2007.731.22
  • Sakata, Y., Ohara, T. and Sugiyama, M. (2007). The hıstory and present state of the graftıng of cucurbıtaceous vegetables ın Japan. Acta Hortic. 731, 159-170. DOI: https://doi.org/10.17660/ActaHortic.2007.731.22
  • Salisbury, F.B. and Ross, C.W. (1992) Plant Physiology, Hormones and Plant Regulators: Auxins and Gibberellins. 4th Edition, Wadsworth Publishing, Belmont, 357-381.
  • Sallaku, G., Sanden, H., Babaj, I., Kaciu, S., Balliu, A., & Rewald, B. (2019). Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Scientia Horticulturae, 243, 177-188. Doi: http://dx.doi.org/10.1016/j.scienta.2018.08.027
  • Singh, R. K., Singh, A., Zander, K. K., Mathew, S., & Kumar, A. (2021). Measuring successful processes of knowledge co-production for managing climate change and associated environmental stressors: Adaptation policies and practices to support Indian farmers. Journal of Environmental Management, 282, 111679.Doi: https://doi.org/10.1016/j.jenvman.2020.111679
  • SPSS. (2013). IBM SPSS Statistics 22.0 for Windows. In: Armonk, N.Y. (Packed programs).
  • Thomas-Barry, G., Martin, C. C. S., Lynch, M. D., Ramsubhag, A., Rouse-Miller, J., & Charles, T. C. (2021). Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Science of The Total Environment, 769, 145214. Doi: https://doi.org/10.1016/j.scitotenv.2021.145214
  • Ulaş, A., Aydın, A., Ulaş, F., & Yetişir, H. (2019). Contribution of roots to growth and physiology of watermelon grafted onto rooted and unrooted seedlings of various bottle gourd rootstocks. International Journal of Agriculture Environment and Food Sciences, 3(4), 211-216. Doi: https://doi.org/10.31015/jaefs.2019.4.2 (in Turkish).
  • Yang, Z.-C., Kubota, C., Chia, P.-L., & Kacira, M. (2012). Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Scientia Horticulturae, 136, 81-86. Doi: http://dx.doi.org/10.1016/j.scienta.2011.12.023
  • Yetişir, H. (2001). Karpuzda Aşılı Fide Kullanımının Bitki Büyümesi, Verim ve Meyve Kalitesi Üzerine Etkileri ile Aşı Yerinin Histolojik Açıdan İncelenmesi [Doktora Tezi, Çukurova Üniversitesi]. Adana,Turkiye. (in Turkish).
  • Yetişir, H. (2017). History and current status of grafted vegetables in Turkey. Chron Horticult, 57, 13-18.
  • Yetişir, H., Kurt, Ş., Sarı, N., & Tok, F. (2007). Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon plant growth, graft compatibility, and resistance to fusarium. Turk. J. Agric. For., 31,1-8. Doi: http://dx.doi.org/10.3906/tar-1101-1716
  • Yetişir, H., & Sarı, N. (2004). Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. For., 28, 231-237. ISSN: 1300-011X / 1303-6173.
  • Yetişir, H., Yarşi, G., & Sarı, N. (2004). Sebzelerde Aşılama. Bahçe, 33, 27-37. Retrieved from https://dergipark.org.tr/tr/pub/bahce/issue/3348/46302 (in Turkish).
  • Yıldız, S., & Balkaya, A. (2016). Tuza tolerant kabak anaçlarının hipokotil özellikleri ve hıyarla aşı uyuşum durumlarının belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(4), 538-546. Doi: https://doi.org/10.29133/yyutbd.282762 (in Turkish).
  • Zhang, T., Shi, Z., Zhang, X., Zheng, S., Wang, J., & Mo, J. (2020). Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 262, 109070. Doi: http://dx.doi.org/10.1016/j.scienta.2019.109070
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bahçe Bitkileri Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Alim Aydın 0000-0002-9424-5556

Halit Yetişir 0000-0002-3599-6675

Hakan Başak 0000-0002-1128-4059

Ramazan Güngör 0000-0001-9834-1265

Sinan Şengöz 0000-0002-0692-9852

Ayşe Nur Çetin 0000-0002-0826-1243

Yayımlanma Tarihi 15 Haziran 2022
Gönderilme Tarihi 14 Nisan 2022
Kabul Tarihi 3 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 2

Kaynak Göster

APA Aydın, A., Yetişir, H., Başak, H., Güngör, R., vd. (2022). Investigation of appropriate grafting method and plant applications to increase grafting success in cucumber. International Journal of Agriculture Environment and Food Sciences, 6(2), 275-284. https://doi.org/10.31015/jaefs.2022.2.11

by-nc.png

International Journal of Agriculture, Environment and Food Sciences dergisinin içeriği, Creative Commons Alıntı-GayriTicari (CC BY-NC) 4.0 Uluslararası Lisansı ile yayınlanmaktadır. Söz konusu telif, üçüncü tarafların içeriği uygun şekilde atıf vermek koşuluyla, ticari olmayan amaçlarla paylaşımına ve uyarlamasına izin vermektedir. Yazarlar, International Journal of Agriculture, Environment and Food Sciences dergisinde yayınlanmış çalışmalarının telif hakkını elinde tutar. 

Web: dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27