Derleme
BibTex RIS Kaynak Göster

Investigation of Microplastic Removal Efficiency of Advanced Wastewater Treatment Methods

Yıl 2022, , 207 - 215, 30.06.2022
https://doi.org/10.35229/jaes.1092149

Öz

Microplastics, an anthropogenic pollutant, pass to wastewater treatment plants through sewage and then meet with the receiving environment. For this reason, wastewater treatment plants are seen as the primary source of microplastics in the aquatic environment and studies are carried out to determine the treatment efficiency of processes in existing plants. However, since it is not one of the microplastic facility design criteria, the removal efficiencies are not at the desired levels, so it is necessary to determine alternative treatment methods. In this context, studies are carried out on the determination of microplastic removal efficiency with advanced wastewater treatment methods in the literature. In this review, the treatment technologies used in these studies, which are quite new, are compared on their removal efficiencies and details about the removal mechanisms are given.

Kaynakça

  • Akarsu, C., Kumbur, H., Gökdağ, K., Kıdeyş, A.E. & Sanchez-Vidal, A. (2020). Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea. Mar. Pollut. Bull., 150, 110776.
  • Akarsu, C., Kumbur, H. & Kıdeyş, A.E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol, 84(7), 1648–1662.
  • Akdogan, Z. & Guven, B. (2019). Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011.
  • Alavian Petroody, S.S., Hashemi, S.H. & van Gestel, C.A.M. (2020). Factors affecting microplastic retention and emission by a Wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere, 261, 128179.
  • Álvarez-Lopeztello, J., Robles, C. & del Castillo, R.F. (2021). Microplastic pollution in neotropical rainforest, savanna, pine plantations, and pasture soils in lowland areas of Oaxaca, Mexico: Preliminary Results. Ecological Indicators, 121.
  • Baresel, C., Harding, M. & Fang, J. (2019). Ultrafiltration/Granulated active carbon-biofilter: efficient removal of a broad range of micropollutant. Appl. Sci., 9, 710.
  • Barnes, D.K.A., Galgani, F., Thompson, R.C. & Barlaz, M. (2009). Küresel ortamlarda plastik döküntülerin birikmesi ve parçalanması. Philos. Trans. R. Soc. B, 364,(1526).
  • Ben-David, E.A., Habibi, M., Haddad, E., Hasanin, M., Angel, D.L., Broth, A.M. & Sabbah, I. (2021). Microplastic distributions in a domestic wastewater treatment plant: Removal efficiency, seasonal variation and influence of sampling technique. Sci. Total Environ., 752, 141880.
  • Blackburn, K. & Green, D. (2021). The potential effects of microplastics on human health: what is known and what is Unknown, Ambio.
  • Brepols, C., Dorgeloh, E., Frechen, F.B., Fuchs, W., Haider, S., Joss, A., de Korte, K., Ruiken, C., Schier, W., van der Roest, H., Wett, M. & Wozniak, T. (2008). Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination, 231 (1), 20-26.
  • Carr, S.A., Liu, J. & Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Res., 91, 174-182.
  • Chou, W., Wang, C., Chang, W. & Chang, S. (2010). Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. J. Hazard. Mater., 180, 217–224.
  • Dey, T.K., Uddin, M.E. & Jamal, M. (2021). Detection and removal of microplastics in wastewater: evolution and impact. Environ Sci Pollut Res, 28, 16925–16947 Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F. & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut., 259, 113837.
  • EU. (2019). https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211027-2
  • Gong, J., Kong, T., Li, Y., Li, Q., Li, Z. & Zhang, J. (2018). Biodegradation of microplastic derived from poly (ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers, 10(12), 1326.
  • Hidayaturrahman, H. & Lee, T.G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull., 146, 696-702.
  • Hongprasith, N., Kittimethawong, C., Lertluksanaporn, R., Eamchotchawalit, T., Kittipongvises, S. & Lohwacharin, J. (2020). IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environ. Sci. Pollut. Res., 27, 18557–18564.
  • Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., Tassin, B. (2018). Microplastics in air: are we breathing it in?. Curr. Opin. Environ. Sci. Health, 1, 1-5.
  • Guo, J., Huang, X., Xiang, L., Wang, Y., Li, Y., Li, H., Cai, Q., Mo, C., & Wong, M., (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263.
  • Gündoğdu, S., Çevik, C., Güzel, E. & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ. Monit. Assess., 190(11), 626.
  • Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G. & Amara, R. (2019). Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Mar. Pollut. Bull., 146, 608–618.
  • Lares, M., Ncibi, M.C., Sillanpää, M. & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res., 133, 236-246.
  • Lebreton, L. Slat, B. Ferrari, F. Sainte-Rose, B. Aitken, J. Marthouse, R. Hajbane, S. Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R. & Reisser, J. (2018). Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep., 8(1), 4666.
  • Lee, H. & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar. Pollut. Bull., 137, 1-8.
  • Leslie, H.A., Brandsma, S.H., van Velzen, M.J.M. & Vethaak, A.D. (2017). Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int., 101, 133-142.
  • Li, D., Zhang, S., Li, S., Zeng, H. & Zhang, J. (2019). Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor. Bioresour. Technol., 292, 122024.
  • Liu, X., & Wang, J. (2020). Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 14, 97.
  • Liu, F., Nord, N.B., Bester, K. & Vollertsen, J. (2020). Microplastics removal from treated wastewater by a biofilter. Water, 12(4), 1085.
  • Liu, Y., Shao, H., Liu, J., Cao, R., Shang, E., Liu, S. & Li, Y. 2021. Transport and transformation of microplastics and nanoplastics in the soil environment: A critical review, Soil use and management, 37(2), 224-242.
  • Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res., 155, 255–265.
  • Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y., 2018. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the Total Environment, 631, 449–458.
  • Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W.M. (2019). Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Clean. Prod., 225, 579–586.
  • Magni, S. Binelli, A. Pittura, L. Avio, C. G. Della Torre, C. Parenti, C. C. Gorbi S. & Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ., 652, 602–610.
  • Magnusson, K. & Norén, F. (2014). Screening of microplastic particles in and down-stream a wastewater treatment plant, Swedish Environmental Research Institute.
  • Moog, D., Schmitt, J., Senger, J., Zarzycki, J., Rexer, K.H., Linne, U., Erb, T. & Maier, U.G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb Cell Factories 18(1), 171.
  • Murphy, F., Ewins, C. & Carbonnier, F. (2016). Wastewater Treatment Works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol., 50(11), 5800-5808.
  • NG, (2021). https://www.nationalgeographic.org/article/whopping-91-percent-plastic-isnt-recycled/
  • Okoffo, E.D., O’Brien, S., O’Brien, J.W., Tscharke, B.J. & Thomas, K.V. (2019). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environ. Sci., Water Research & Technology, 5(11), 1908-1931.
  • Ogonowski, M., Gerdes, Z. & Gorokhova, E. (2018). What we know and what we think we know about microplastic effects – a critical perspective. Curr. Opin. Environ. Sci. Health, 1, 41-46.
  • PA. (2018). Avrupa plastik üretimi, talebi ve atık verilerinin analizi, http://www.plasticseurope.org/Document/plastics---the-facts-2016.aspx
  • Perren, W. Wojtasik, A. & Cai, Q. (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), 3357-3364.
  • Pittura, L., Foglia, A., Akyol, Ç., Cipolletta, G., Benedetti, M., Regoli, F., Eusebi, A.L., Sabbatini, S., Tseng, L.Y., Katsou, E., Gorbi, S., Fatone, F. (2021). Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere, 262, 128415.
  • Prajapati, S., Beal, M., Maley, J. & Brinkmann, M. (2021). Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res., 28, 32545–32553.
  • Qin, R., Su, C., Liu, W., Tang, L., Li, X., Deng, X., Wang, A. & Chen, Z. (2020). Effects of Exposure to Polyether Sulfone Microplastic on the Nitrifying Process and Microbial Community Structure in Aerobic Granular Sludge. Bioresource Technology, 122827.
  • Raju, S., Carbery, M., Kuttykattil, A., Senthirajah, K., Lundmark, A., Rogers, Z., SCB, S., Evans, G. & Palanisami, T. (2020). Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res., 173, 115549.
  • Rasmussen, L.A., Iordachescu, L., Tumlin, S. & Vollertsen, J. (2021). A complete mass balance for plastics in a wastewater treatment plant—Macroplastics contributes more than microplastics. Water Res., 201, 117307.
  • Ross, P.S., Chastain, S., Vassilenko, E. Etemadifar, A., Zimmermann, S., Quesnel, S.A., Eert, J., Solomon, E., Patankar, S., Posacka, A.M. & Williams, B. (2021). Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nature Communications, 12, 106.
  • Russell, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W., Hickman, D., Jee, J., Kimovec, F.M. & Koppstein, D. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol., 77(17), 6076–6084.
  • Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y., Wen, X., Chen, M. & Yi, H. (2020). Removal of microplastics via drinking water treatment: current knowledge and future directions, Chemosphere, 251, 126612.
  • Shim, W. & Thompson, R. (2015). Microplastics in the ocean. Arch. Environ. Contam. Toxicol., 69(3), 265-268.
  • Simon, M., van Last, N. & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res., 142, 1–9.
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C. & Ni, B.J. (2019). Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res, 152, 21-37.
  • Takdastan, A., Niari, M.H., Babei, A., Dobaradaran, S., Jorfi, S. & Ahmadi, M. (2021). Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. J. Environ. Manag., 280, 111851.
  • Talvitie, J. Mikola, A. Koistinen, A. & Setälä, O. (2017). Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment Technologies. Water Res., 123, 401-407.
  • Wagner, S. Hüffer, T. Klöckner, P. Wehrhahn, M. Hofmann, T. & Reemtsma, T. (2018). Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects, Water Res., 139, 83-100.
  • Weisbart, C., Raghavan, S., Muralidharan, K. & Potter B.G. (2020). Feasibility of removal of graphene oxide particles from aqueous suspensions by DC/AC electrocoagulation. J. Water Process. Eng. 36, 101249.
  • Wisniowska, E., Moraczewska-Majkut, K. & Noco´n, W. (2018). Efficiency of microplastics removal in selected wastewater treatment plants—Preliminary studies. Desalin. Water Treat., 134, 316–323
  • Wolff, S., Kerpen, J., Prediger, J., Barkmann, L. & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X, 2, 100014.
  • Wolff, S., Weber, F., Kerpen, J., Winklhofer, M., Engelhart, M. & Barkmann, L. (2021). Elimination of microplastics by downstream sand filters in wastewater treatment. Water, 13, 33.
  • Vogelsang, C., Lusher, A.L., Dadkhah, M.E., Sundvor, I., Umar, M., Ranneklev, S.B., Eidsvoll, D. & Meland, S. (2018). Microplastics in Road Dust–Characteristics, Pathways and Measures.
  • Vollertsen, J., & Hansen, A. A. (2017). Microplastic in Danish wastewater: Sources, occurrences and fate. The Danish Environmental Protection Agency. Environmental Project, 1906.
  • Vuori, L. & Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics, 192, 107246.
  • Yang, L., Zhang, Y., Kang, S., Wang, Z. & Wu, C. (2021). Microplastics in freshwater sediment: a review on methods, occurrence, and sources. Sci. Total Environ., 754, 141948.
  • Zhang, X., Chen, J. & Li, J. (2020). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association, Chemosphere, 251, 126360.
  • Zhao, L., Su, C., Liu, W., Qin, R., Tang, L., Deng, X., Wu, S. & Chen, M. (2020). Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge, Ecotoxicology and Environmental Safety, 190, 110070.
  • Ziajahromi, S. Neale, P. Rintoul, L. & Leusch, F. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Res., 112, 93-99.

İleri atıksu arıtma metotlarının mikroplastik giderim veriminin incelenmesi

Yıl 2022, , 207 - 215, 30.06.2022
https://doi.org/10.35229/jaes.1092149

Öz

Antropojenik kaynaklı bir kirletici olan mikroplastikler, kanalizasyon aracılığıyla atıksu arıtma tesislerine geçmekte devamında ise alıcı ortam ile buluşmaktadır. Bu nedenle atıksu arıtma tesisleri, su ortamındaki mikroplastiklerin birincil kaynağı olarak görülmekte ve mevcut tesislerdeki proseslerin arıtma verimlerinin belirlenmesi üzerine çalışmalar gerçekleşmektedir. Ancak mikroplastik tesis tasarım kriterlerinden biri olmadığı için giderim verimleri istenilen seviyelerde olmamakta dolayısıyla alternatif arıtma metotların belirlenmesine ihtiyaç duyulmaktadır. Bu kapsamda literatürde ileri atıksu arıtma metotları ile mikroplastik giderim verimliliğinin belirlenmesi üzerine çalışmalar gerçekleştirilmektedir. Bu derlemede de oldukça yeni olan bu çalışmalarda kullanılan arıtma teknolojileri giderim verimleri üzerinden kıyaslanmış ve giderim mekanizmaları hakkında detaylar verilmiştir.

Kaynakça

  • Akarsu, C., Kumbur, H., Gökdağ, K., Kıdeyş, A.E. & Sanchez-Vidal, A. (2020). Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea. Mar. Pollut. Bull., 150, 110776.
  • Akarsu, C., Kumbur, H. & Kıdeyş, A.E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol, 84(7), 1648–1662.
  • Akdogan, Z. & Guven, B. (2019). Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011.
  • Alavian Petroody, S.S., Hashemi, S.H. & van Gestel, C.A.M. (2020). Factors affecting microplastic retention and emission by a Wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere, 261, 128179.
  • Álvarez-Lopeztello, J., Robles, C. & del Castillo, R.F. (2021). Microplastic pollution in neotropical rainforest, savanna, pine plantations, and pasture soils in lowland areas of Oaxaca, Mexico: Preliminary Results. Ecological Indicators, 121.
  • Baresel, C., Harding, M. & Fang, J. (2019). Ultrafiltration/Granulated active carbon-biofilter: efficient removal of a broad range of micropollutant. Appl. Sci., 9, 710.
  • Barnes, D.K.A., Galgani, F., Thompson, R.C. & Barlaz, M. (2009). Küresel ortamlarda plastik döküntülerin birikmesi ve parçalanması. Philos. Trans. R. Soc. B, 364,(1526).
  • Ben-David, E.A., Habibi, M., Haddad, E., Hasanin, M., Angel, D.L., Broth, A.M. & Sabbah, I. (2021). Microplastic distributions in a domestic wastewater treatment plant: Removal efficiency, seasonal variation and influence of sampling technique. Sci. Total Environ., 752, 141880.
  • Blackburn, K. & Green, D. (2021). The potential effects of microplastics on human health: what is known and what is Unknown, Ambio.
  • Brepols, C., Dorgeloh, E., Frechen, F.B., Fuchs, W., Haider, S., Joss, A., de Korte, K., Ruiken, C., Schier, W., van der Roest, H., Wett, M. & Wozniak, T. (2008). Upgrading and retrofitting of municipal wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination, 231 (1), 20-26.
  • Carr, S.A., Liu, J. & Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Res., 91, 174-182.
  • Chou, W., Wang, C., Chang, W. & Chang, S. (2010). Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. J. Hazard. Mater., 180, 217–224.
  • Dey, T.K., Uddin, M.E. & Jamal, M. (2021). Detection and removal of microplastics in wastewater: evolution and impact. Environ Sci Pollut Res, 28, 16925–16947 Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F. & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut., 259, 113837.
  • EU. (2019). https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211027-2
  • Gong, J., Kong, T., Li, Y., Li, Q., Li, Z. & Zhang, J. (2018). Biodegradation of microplastic derived from poly (ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers, 10(12), 1326.
  • Hidayaturrahman, H. & Lee, T.G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull., 146, 696-702.
  • Hongprasith, N., Kittimethawong, C., Lertluksanaporn, R., Eamchotchawalit, T., Kittipongvises, S. & Lohwacharin, J. (2020). IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environ. Sci. Pollut. Res., 27, 18557–18564.
  • Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., Tassin, B. (2018). Microplastics in air: are we breathing it in?. Curr. Opin. Environ. Sci. Health, 1, 1-5.
  • Guo, J., Huang, X., Xiang, L., Wang, Y., Li, Y., Li, H., Cai, Q., Mo, C., & Wong, M., (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263.
  • Gündoğdu, S., Çevik, C., Güzel, E. & Kilercioğlu, S. (2018). Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ. Monit. Assess., 190(11), 626.
  • Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G. & Amara, R. (2019). Sources of microplastics pollution in the marine environment: Importance of wastewater treatment plant and coastal landfill. Mar. Pollut. Bull., 146, 608–618.
  • Lares, M., Ncibi, M.C., Sillanpää, M. & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res., 133, 236-246.
  • Lebreton, L. Slat, B. Ferrari, F. Sainte-Rose, B. Aitken, J. Marthouse, R. Hajbane, S. Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R. & Reisser, J. (2018). Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep., 8(1), 4666.
  • Lee, H. & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar. Pollut. Bull., 137, 1-8.
  • Leslie, H.A., Brandsma, S.H., van Velzen, M.J.M. & Vethaak, A.D. (2017). Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int., 101, 133-142.
  • Li, D., Zhang, S., Li, S., Zeng, H. & Zhang, J. (2019). Aerobic granular sludge operation and nutrients removal mechanism in a novel configuration reactor combined sequencing batch reactor and continuous-flow reactor. Bioresour. Technol., 292, 122024.
  • Liu, X., & Wang, J. (2020). Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 14, 97.
  • Liu, F., Nord, N.B., Bester, K. & Vollertsen, J. (2020). Microplastics removal from treated wastewater by a biofilter. Water, 12(4), 1085.
  • Liu, Y., Shao, H., Liu, J., Cao, R., Shang, E., Liu, S. & Li, Y. 2021. Transport and transformation of microplastics and nanoplastics in the soil environment: A critical review, Soil use and management, 37(2), 224-242.
  • Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res., 155, 255–265.
  • Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y., 2018. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the Total Environment, 631, 449–458.
  • Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W.M. (2019). Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Clean. Prod., 225, 579–586.
  • Magni, S. Binelli, A. Pittura, L. Avio, C. G. Della Torre, C. Parenti, C. C. Gorbi S. & Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ., 652, 602–610.
  • Magnusson, K. & Norén, F. (2014). Screening of microplastic particles in and down-stream a wastewater treatment plant, Swedish Environmental Research Institute.
  • Moog, D., Schmitt, J., Senger, J., Zarzycki, J., Rexer, K.H., Linne, U., Erb, T. & Maier, U.G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microb Cell Factories 18(1), 171.
  • Murphy, F., Ewins, C. & Carbonnier, F. (2016). Wastewater Treatment Works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol., 50(11), 5800-5808.
  • NG, (2021). https://www.nationalgeographic.org/article/whopping-91-percent-plastic-isnt-recycled/
  • Okoffo, E.D., O’Brien, S., O’Brien, J.W., Tscharke, B.J. & Thomas, K.V. (2019). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environ. Sci., Water Research & Technology, 5(11), 1908-1931.
  • Ogonowski, M., Gerdes, Z. & Gorokhova, E. (2018). What we know and what we think we know about microplastic effects – a critical perspective. Curr. Opin. Environ. Sci. Health, 1, 41-46.
  • PA. (2018). Avrupa plastik üretimi, talebi ve atık verilerinin analizi, http://www.plasticseurope.org/Document/plastics---the-facts-2016.aspx
  • Perren, W. Wojtasik, A. & Cai, Q. (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), 3357-3364.
  • Pittura, L., Foglia, A., Akyol, Ç., Cipolletta, G., Benedetti, M., Regoli, F., Eusebi, A.L., Sabbatini, S., Tseng, L.Y., Katsou, E., Gorbi, S., Fatone, F. (2021). Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere, 262, 128415.
  • Prajapati, S., Beal, M., Maley, J. & Brinkmann, M. (2021). Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res., 28, 32545–32553.
  • Qin, R., Su, C., Liu, W., Tang, L., Li, X., Deng, X., Wang, A. & Chen, Z. (2020). Effects of Exposure to Polyether Sulfone Microplastic on the Nitrifying Process and Microbial Community Structure in Aerobic Granular Sludge. Bioresource Technology, 122827.
  • Raju, S., Carbery, M., Kuttykattil, A., Senthirajah, K., Lundmark, A., Rogers, Z., SCB, S., Evans, G. & Palanisami, T. (2020). Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res., 173, 115549.
  • Rasmussen, L.A., Iordachescu, L., Tumlin, S. & Vollertsen, J. (2021). A complete mass balance for plastics in a wastewater treatment plant—Macroplastics contributes more than microplastics. Water Res., 201, 117307.
  • Ross, P.S., Chastain, S., Vassilenko, E. Etemadifar, A., Zimmermann, S., Quesnel, S.A., Eert, J., Solomon, E., Patankar, S., Posacka, A.M. & Williams, B. (2021). Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nature Communications, 12, 106.
  • Russell, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W., Hickman, D., Jee, J., Kimovec, F.M. & Koppstein, D. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol., 77(17), 6076–6084.
  • Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y., Wen, X., Chen, M. & Yi, H. (2020). Removal of microplastics via drinking water treatment: current knowledge and future directions, Chemosphere, 251, 126612.
  • Shim, W. & Thompson, R. (2015). Microplastics in the ocean. Arch. Environ. Contam. Toxicol., 69(3), 265-268.
  • Simon, M., van Last, N. & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res., 142, 1–9.
  • Sun, J., Dai, X., Wang, Q., van Loosdrecht, M.C. & Ni, B.J. (2019). Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res, 152, 21-37.
  • Takdastan, A., Niari, M.H., Babei, A., Dobaradaran, S., Jorfi, S. & Ahmadi, M. (2021). Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. J. Environ. Manag., 280, 111851.
  • Talvitie, J. Mikola, A. Koistinen, A. & Setälä, O. (2017). Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment Technologies. Water Res., 123, 401-407.
  • Wagner, S. Hüffer, T. Klöckner, P. Wehrhahn, M. Hofmann, T. & Reemtsma, T. (2018). Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects, Water Res., 139, 83-100.
  • Weisbart, C., Raghavan, S., Muralidharan, K. & Potter B.G. (2020). Feasibility of removal of graphene oxide particles from aqueous suspensions by DC/AC electrocoagulation. J. Water Process. Eng. 36, 101249.
  • Wisniowska, E., Moraczewska-Majkut, K. & Noco´n, W. (2018). Efficiency of microplastics removal in selected wastewater treatment plants—Preliminary studies. Desalin. Water Treat., 134, 316–323
  • Wolff, S., Kerpen, J., Prediger, J., Barkmann, L. & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. X, 2, 100014.
  • Wolff, S., Weber, F., Kerpen, J., Winklhofer, M., Engelhart, M. & Barkmann, L. (2021). Elimination of microplastics by downstream sand filters in wastewater treatment. Water, 13, 33.
  • Vogelsang, C., Lusher, A.L., Dadkhah, M.E., Sundvor, I., Umar, M., Ranneklev, S.B., Eidsvoll, D. & Meland, S. (2018). Microplastics in Road Dust–Characteristics, Pathways and Measures.
  • Vollertsen, J., & Hansen, A. A. (2017). Microplastic in Danish wastewater: Sources, occurrences and fate. The Danish Environmental Protection Agency. Environmental Project, 1906.
  • Vuori, L. & Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics, 192, 107246.
  • Yang, L., Zhang, Y., Kang, S., Wang, Z. & Wu, C. (2021). Microplastics in freshwater sediment: a review on methods, occurrence, and sources. Sci. Total Environ., 754, 141948.
  • Zhang, X., Chen, J. & Li, J. (2020). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association, Chemosphere, 251, 126360.
  • Zhao, L., Su, C., Liu, W., Qin, R., Tang, L., Deng, X., Wu, S. & Chen, M. (2020). Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge, Ecotoxicology and Environmental Safety, 190, 110070.
  • Ziajahromi, S. Neale, P. Rintoul, L. & Leusch, F. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Res., 112, 93-99.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ceyhun Akarsu 0000-0002-0168-9941

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 23 Mart 2022
Kabul Tarihi 12 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Akarsu, C. (2022). İleri atıksu arıtma metotlarının mikroplastik giderim veriminin incelenmesi. Journal of Anatolian Environmental and Animal Sciences, 7(2), 207-215. https://doi.org/10.35229/jaes.1092149


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS