Derleme
BibTex RIS Kaynak Göster

Physiological and Molecular Response to Heavy Metal Stress in Plants

Yıl 2022, , 528 - 536, 31.12.2022
https://doi.org/10.35229/jaes.1160228

Öz

With the increasing anthropogenic effect and industrialization, the balance of natural ecosystems is deteriorating and heavy metals accumulate above the levels that many living things can tolerate. When plants, sessile organisms, are exposed to heavy metal pollution, serious consequences such as decreased productivity and loss of quality in products are encountered. The effects on plants exposed to heavy metal pollution may vary according to factors such as heavy metal type, concentration, exposure time, and plant species. Heavy metal stress causes a decrease in shoot and root development, biomass, photosynthetic rate, stomatal conductivity and transpiration rate; cause chlorosis and necrosis. In addition, it causes an increase in the amount of ROS and MDA, creates lesions in DNA and destabilizes the genome with unrepaired damages. Plants have developed some defense strategies, including enzymatic and non-enzymatic antioxidants, to combat these negative effects of heavy metals. Heavy metal stress-tolerant hyperaccumulator plants, which can continue to grow even in soils with high levels of heavy metals, are frequently used in the phytoremediation of soils contaminated with heavy metals and constitute a model in transgenic plant technology.

Kaynakça

  • Agarwal, P., Mitra, M., Banerjee, S. & Roy, S. (2020). MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Science, 297: 110501.
  • Ahmad, R., Ali, S., Abid, M., Rizwan, M., Ali, B., Tanveer, A., Ahmad, I., Azam, M. & Ghani, M.A. (2020). Glycinebetaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environmental Science and Pollution Research, 27(1): 1101-1111.
  • Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M.M., Costantino, P. & Cardarelli, M., (2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 66(13): 3815-3829.
  • Chandrakar, V., Pandey, N. & Keshavkant, S. (2018). Plant responses to arsenic toxicity: morphology and physiology. In Mechanisms of arsenic toxicity and tolerance in plants, Springer, Singapore, pp. 27-48. Chaturvedi, R., Talwar, L., Malik, G. & Paul, M.S. (2020). Heavy metal-induced toxicity responses in plants: an overview from physicochemical to molecular level. Cellular and Molecular Phytotoxicity of Heavy Metals, pp. 69-88.
  • Chen, Q., Zhang, X., Liu, Y., Wei, J., Shen, W., Shen, Z. & Cui, J. (2017). Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regulation, 81(2): 253-264.
  • Dalvi, A.A. & Bhalerao, S.A. (2013). Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci, 2(9): 362-368.
  • Delangiz, N., Khoshru, B., Asgari Lajayer, B., Ghorbanpour, M. & Kazemalilou, S. (2020). Molecular mechanisms of heavy metal tolerance in plants. Cellular and Molecular Phytotoxicity of Heavy Metals, 125-136.
  • Dennis, K.K., Uppal, K., Liu, K.H., Ma, C., Liang, B., Go, Y.M. & Jones, D.P. (2019). Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. Database, 2019.
  • Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U. & Roy, S. (2018). Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling & Behavior, 13(8): e1460048.
  • Farraji, H., Zaman, N. Q., Tajuddin, R. & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int J Env Tech Sci, 2: 69-75. Fu, S., Lu, Y., Zhang, X., Yang, G., Chao, D., Wang, Z., Shi, M., Chen, J., Chao, D.Y., Li, R., Ma, J.F. & Xia, J. (2019). The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 70(20): 5909-5918.
  • Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V. & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16(3): 1807-1828.
  • Gill, M. (2014). Heavy metal stress in plants: a review. International Journal of Advanced Research, 2(6): 1043-1055.
  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211: 111887.
  • Hanikenne, M. & Nouet, C. (2011). Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology, 14(3): 252-259.
  • Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J. & Ok, Y.S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7): 366-381.
  • Huang, H., Ullah, F., Zhou, D.X., Yi, M. & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10: 800. Huo, K., Shangguan, X., Xia, Y., Shen, Z. & Chen, C. (2020). Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate. Ecotoxicology and Environmental Safety, 190: 110105.
  • Jogawat, A., Yadav, B. & Narayan, O.P. (2021). Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiologia Plantarum, 173(1): 259-275.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., Corpas, F.J. & Ahmad, P. (2020). Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials, 399: 123020.
  • Khaliq, A., Ali, S., Hameed, A., Farooq, M.A., Farid, M., Shakoor, M.B., Mahmood, K., Ishaque, W. & Rizwan, M. (2016). Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 62(5): 633-647.
  • Kireçci, O.A. (2018). Bitkilerde enzimatik ve enzimatik olmayan antioksidanlar. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2): 473-483.
  • Li, M.Y., Xu, Z.S., Huang, Y., Tian, C., Wang, F. & Xiong, A.S. (2015). Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Molecular Genetics and Genomics, 290(6): 2049-2061.
  • Li, S., Han, X., Lu, Z., Qiu, W., Yu, M., Li, H., He, Z. & Zhuo, R. (2022). MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. International Journal of Molecular Sciences, 23(8): 4463.
  • Mahey, S., Kumar, R., Sharma, M., Kumar, V. & Bhardwaj, R. (2020). A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences, 2(7): 1-12.
  • Mitra, A., Chatterjee, S., Datta, S., Sharma, S., Veer, V., Razafindrabe, B.H., Walther, C. & Gupta, D.K. (2014). Mechanism of metal transporters in plants. Heavy metal remediation: transport and accumulation in plants, pp.1-28.
  • Modareszadeh, M., Bahmani, R., Kim, D. & Hwang, S. (2021). CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. Plant Molecular Biology, 105(1): 115-132.
  • Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3): 199-216.
  • Okant, M. & Kaya, C. (2019). The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environmental Science and Pollution Research, 26(12): 11864-11874.
  • Ozfidan-Konakci, C., Yildiztugay, E., Elbasan, F., Kucukoduk, M. & Turkan, I. (2020). Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. Journal of Hazardous Materials, 388: 122061.
  • Özay, C. & Mammadov, R. (2013). Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1): 68-77.
  • Rahman, M., Lee, S.H., Ji, H.C., Kabir, A.H., Jones, C.S. & Lee, K.W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular Sciences, 19(10): 3073.
  • Shaari, N.E.M., Tajudin, M.T.F.M., Khandaker, M.M., Majrashi, A., Alenazi, M.M., Abdullahi, U.A. & Mohd, K.S. (2022). Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 84.
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232: 1-44.
  • Sheng, Y., Yan, X., Huang, Y., Han, Y., Zhang, C., Ren, Y., Fan, T., Xiao, F., Liu, Y. & Cao, S. (2019). The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant, Cell & Environment, 42(3): 891-903.
  • Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6: 1143.
  • Sürmen, B., Kılıç, D.D., Kutbay, H.G. & Tuna, E.E. (2019). Doğal olarak yayılış gösteren Lepidium draba L. türünün fitoremediasyon yönteminde kullanılabilirliğinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 17: 491-499.
  • Sytar, O., Ghosh, S., Malinska, H., Zivcak, M. & Brestic, M. (2021). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum, 173(1): 148-166.
  • Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M.N.V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4): 985-999.
  • Takarina, N.D. & Pin, T.G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, pp. 77-81.
  • Yuan, J., Bai, Y., Chao, Y., Sun, X., He, C., Liang, X., Xie, L. & Han, L. (2018). Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (Agrostis stolonifera L.). PeerJ, 6: e5191.
  • Zhi, J., Liu, X., Yin, P., Yang, R., Liu, J. & Xu, J. (2020). Overexpression of the metallothionein gene PaMT3-1 from Phytolacca americana enhances plant tolerance to cadmium. Plant Cell. Tissue and Organ Culture (PCTOC), 143(1): 211-218.
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250: 109557.

Bitkilerde Ağır Metal Stresine Verilen Fizyolojik ve Moleküler Yanıtlar

Yıl 2022, , 528 - 536, 31.12.2022
https://doi.org/10.35229/jaes.1160228

Öz

Artan antropojenik etki ve endüstrileşme ile birlikte doğal ekosistemlerin dengeleri bozulmakta ve birçok canlının tolere edilebileceği düzeylerin üzerinde ağır metal birikmektedir. Sesil organizmalar olan bitkiler ağır metal kirliliğine maruz kaldıklarında verimliliğin azalması ve ürünlerde kalite kaybının yaşanması gibi ciddi sonuçlarla karşı karşıya kalınmaktadır. Bu ağır metallerden bakır (Cu), çinko (Zn), kobalt (Co), mangan (Mn), molibden (Mo) ve nikel düşük düzeylerde bitkiler için gerekli olduğu halde yüksek seviyelerde bulunması bitkilerde stres oluşturmaktadır. Alüminyum (Al), arsenik (As), civa (Hg), kadmiyum (Cd), krom (Cr) ve kurşun (Pb) ise bitki gelişiminde gerekli olmayıp çok düşük konsantrasyonlarda bile bitkiye zarar vermekte ve toksik özellik göstermektedir. Ağır metal kirliliğine maruz kalmış bitkilerde oluşan etkiler ağır metal çeşidi, konsantrasyonu, maruziyet süresi, bitki türü gibi faktörlere göre değişebilmektedir. Ağır metal stresi bitkide sürgün ve kök gelişimi, biyokütle, fotosentetik hız, stoma iletkenliği ve transpirasyon hızının azalmasına; kloroz ve nekroza sebep olmaktadır Ayrıca ROS ve MDA miktarında artışa sebep olmakta, DNA’da lezyonlar oluşturmakta ve tamir edilmeyen hasarlar ile genomun kararlılığını bozmaktadır. Bitkiler ağır metallerin bu olumsuz etkileriyle mücadele edebilmek için enzimatik olan ve olmayan antioksidanların da içinde bulunduğu bazı savunma stratejileri geliştirmişlerdir. Yüksek seviyelerde ağır metallerin bulunduğu topraklarda bile gelişimini sürdürebilen ağır metal stresine toleranslı hiperakümülatör bitkiler ise ağır metallerle kontamine olmuş toprakların fitoremediasyonunda sıklıkla kullanılmakta ve transgenik bitki teknolojisinde bir model oluşturmaktadır.

Kaynakça

  • Agarwal, P., Mitra, M., Banerjee, S. & Roy, S. (2020). MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Science, 297: 110501.
  • Ahmad, R., Ali, S., Abid, M., Rizwan, M., Ali, B., Tanveer, A., Ahmad, I., Azam, M. & Ghani, M.A. (2020). Glycinebetaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environmental Science and Pollution Research, 27(1): 1101-1111.
  • Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M.M., Costantino, P. & Cardarelli, M., (2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 66(13): 3815-3829.
  • Chandrakar, V., Pandey, N. & Keshavkant, S. (2018). Plant responses to arsenic toxicity: morphology and physiology. In Mechanisms of arsenic toxicity and tolerance in plants, Springer, Singapore, pp. 27-48. Chaturvedi, R., Talwar, L., Malik, G. & Paul, M.S. (2020). Heavy metal-induced toxicity responses in plants: an overview from physicochemical to molecular level. Cellular and Molecular Phytotoxicity of Heavy Metals, pp. 69-88.
  • Chen, Q., Zhang, X., Liu, Y., Wei, J., Shen, W., Shen, Z. & Cui, J. (2017). Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regulation, 81(2): 253-264.
  • Dalvi, A.A. & Bhalerao, S.A. (2013). Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci, 2(9): 362-368.
  • Delangiz, N., Khoshru, B., Asgari Lajayer, B., Ghorbanpour, M. & Kazemalilou, S. (2020). Molecular mechanisms of heavy metal tolerance in plants. Cellular and Molecular Phytotoxicity of Heavy Metals, 125-136.
  • Dennis, K.K., Uppal, K., Liu, K.H., Ma, C., Liang, B., Go, Y.M. & Jones, D.P. (2019). Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. Database, 2019.
  • Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U. & Roy, S. (2018). Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling & Behavior, 13(8): e1460048.
  • Farraji, H., Zaman, N. Q., Tajuddin, R. & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. Int J Env Tech Sci, 2: 69-75. Fu, S., Lu, Y., Zhang, X., Yang, G., Chao, D., Wang, Z., Shi, M., Chen, J., Chao, D.Y., Li, R., Ma, J.F. & Xia, J. (2019). The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 70(20): 5909-5918.
  • Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V. & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16(3): 1807-1828.
  • Gill, M. (2014). Heavy metal stress in plants: a review. International Journal of Advanced Research, 2(6): 1043-1055.
  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211: 111887.
  • Hanikenne, M. & Nouet, C. (2011). Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Current Opinion in Plant Biology, 14(3): 252-259.
  • Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J. & Ok, Y.S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7): 366-381.
  • Huang, H., Ullah, F., Zhou, D.X., Yi, M. & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10: 800. Huo, K., Shangguan, X., Xia, Y., Shen, Z. & Chen, C. (2020). Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate. Ecotoxicology and Environmental Safety, 190: 110105.
  • Jogawat, A., Yadav, B. & Narayan, O.P. (2021). Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiologia Plantarum, 173(1): 259-275.
  • Kaya, C., Ashraf, M., Alyemeni, M.N., Corpas, F.J. & Ahmad, P. (2020). Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials, 399: 123020.
  • Khaliq, A., Ali, S., Hameed, A., Farooq, M.A., Farid, M., Shakoor, M.B., Mahmood, K., Ishaque, W. & Rizwan, M. (2016). Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 62(5): 633-647.
  • Kireçci, O.A. (2018). Bitkilerde enzimatik ve enzimatik olmayan antioksidanlar. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2): 473-483.
  • Li, M.Y., Xu, Z.S., Huang, Y., Tian, C., Wang, F. & Xiong, A.S. (2015). Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress. Molecular Genetics and Genomics, 290(6): 2049-2061.
  • Li, S., Han, X., Lu, Z., Qiu, W., Yu, M., Li, H., He, Z. & Zhuo, R. (2022). MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. International Journal of Molecular Sciences, 23(8): 4463.
  • Mahey, S., Kumar, R., Sharma, M., Kumar, V. & Bhardwaj, R. (2020). A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences, 2(7): 1-12.
  • Mitra, A., Chatterjee, S., Datta, S., Sharma, S., Veer, V., Razafindrabe, B.H., Walther, C. & Gupta, D.K. (2014). Mechanism of metal transporters in plants. Heavy metal remediation: transport and accumulation in plants, pp.1-28.
  • Modareszadeh, M., Bahmani, R., Kim, D. & Hwang, S. (2021). CAX3 (cation/proton exchanger) mediates a Cd tolerance by decreasing ROS through Ca elevation in Arabidopsis. Plant Molecular Biology, 105(1): 115-132.
  • Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3): 199-216.
  • Okant, M. & Kaya, C. (2019). The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environmental Science and Pollution Research, 26(12): 11864-11874.
  • Ozfidan-Konakci, C., Yildiztugay, E., Elbasan, F., Kucukoduk, M. & Turkan, I. (2020). Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. Journal of Hazardous Materials, 388: 122061.
  • Özay, C. & Mammadov, R. (2013). Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1): 68-77.
  • Rahman, M., Lee, S.H., Ji, H.C., Kabir, A.H., Jones, C.S. & Lee, K.W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular Sciences, 19(10): 3073.
  • Shaari, N.E.M., Tajudin, M.T.F.M., Khandaker, M.M., Majrashi, A., Alenazi, M.M., Abdullahi, U.A. & Mohd, K.S. (2022). Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 84.
  • Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M. & Pinelli, E. (2014). Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environmental Contamination and Toxicology, 232: 1-44.
  • Sheng, Y., Yan, X., Huang, Y., Han, Y., Zhang, C., Ren, Y., Fan, T., Xiao, F., Liu, Y. & Cao, S. (2019). The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant, Cell & Environment, 42(3): 891-903.
  • Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6: 1143.
  • Sürmen, B., Kılıç, D.D., Kutbay, H.G. & Tuna, E.E. (2019). Doğal olarak yayılış gösteren Lepidium draba L. türünün fitoremediasyon yönteminde kullanılabilirliğinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 17: 491-499.
  • Sytar, O., Ghosh, S., Malinska, H., Zivcak, M. & Brestic, M. (2021). Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum, 173(1): 148-166.
  • Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. & Prasad, M.N.V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4): 985-999.
  • Takarina, N.D. & Pin, T.G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, pp. 77-81.
  • Yuan, J., Bai, Y., Chao, Y., Sun, X., He, C., Liang, X., Xie, L. & Han, L. (2018). Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (Agrostis stolonifera L.). PeerJ, 6: e5191.
  • Zhi, J., Liu, X., Yin, P., Yang, R., Liu, J. & Xu, J. (2020). Overexpression of the metallothionein gene PaMT3-1 from Phytolacca americana enhances plant tolerance to cadmium. Plant Cell. Tissue and Organ Culture (PCTOC), 143(1): 211-218.
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250: 109557.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kübra Sevgi 0000-0001-8382-2162

Sema Leblebici 0000-0002-3762-6408

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 10 Ağustos 2022
Kabul Tarihi 14 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Sevgi, K., & Leblebici, S. (2022). Bitkilerde Ağır Metal Stresine Verilen Fizyolojik ve Moleküler Yanıtlar. Journal of Anatolian Environmental and Animal Sciences, 7(4), 528-536. https://doi.org/10.35229/jaes.1160228


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS