Araştırma Makalesi
BibTex RIS Kaynak Göster

Dimethoate ve Malathion Pestisitlerinin Dreissena polymorpha (Pallas, 1771) Üzerindeki Kombine Etkisinin Sitokrom P450 ve Asetilkolinesteraz Kullanılarak Belirlenmesi

Yıl 2022, , 417 - 424, 31.12.2022
https://doi.org/10.35229/jaes.1168122

Öz

Bu çalışmada, Dreissena polymorpha’da organofosforlu dimethoate ve malathion etken maddeli insektisit karışımlarının toksisitesini ortaya çıkarmak için sitokrom P450 (CYP1A1) ve Asetilkolinesteraz (AchE) aktiviteleri ölçülmüştür. Dimethoate ve malathion'un öldürücü konsantrasyonu (LC50) 96 saat maruziyet sonunda 40,82±2,54 mg/L olarak hesaplanmıştır. D. polymorpha dimethoate ve malathionun üç subletal konsantrasyonuna (LC50 değerine 1/16, 1/8 ve 1/4 oranla) 24 saat ve 96 saat boyunca maruz bırakılmıştır. CYP1A1 ve AChE seviyeleri, ticari kit kullanılarak mikroplaka okuyucuda ölçülmüştür. AChE aktivitelerinin kontrol grubuna göre 96 saat sonra tüm maruziyet gruplarında düştüğü gözlenmiştir. Maruziyet süreleri karşılaştırıldığında 96. saat sonunda enzim aktivitelerinde istatistiksel olarak anlamlı bir değişiklik olmadığı belirlenmiştir. Tüm gruplarda 24 saatin sonunda CYP1A1 seviyelerinde istatistiksel olarak anlamlı bir değişiklik olmamıştır, ancak kontrol grubuna kıyasla 96 saat sonra azalma görülmüştür (p0,05). Dimethoate ve malathion kombinasyonunun toksik yanıtı konsantrasyonlarına bağlı olarak değişebildiği tespit edilmiştir. Sonuç olarak, dimethoate ve malathion karışımlarının, D. polymorpha'da AChE ve CYP1A1 aktivitelerini inhibe ettiği ve bu enzimlerin etkili bir biyobelirteç olarak kullanılabileceği ortaya konmuştur.

Destekleyen Kurum

Çalışma herhangi bir kurum kuruluş arafından maddi olarak desteklenmemiştir.

Kaynakça

  • Abass, K. & Pelkonen, O. (2013). The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches. Toxicology in Vitro, 27, 1584–1588. DOI: 10.1016/j.tiv.2012.05.003.
  • Ashauer, R., Boxall, A. & Brown, C. (2006). Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex. Archives of Environmental Contamination and Toxicology, 51, 542-548. DOI: 10.1007/s00244-005-0317-z.
  • Assini, F.L., Zanette, K.D., Brocardo, P.S., Pandolfo, P. & Rodrigues, A.L.S. (2005). Behavioral effects and ChE measures after acute and repeated administration of malathion in rats. Environmental Toxicology and Pharmacology, 20, 443–449. DOI: 10.1016/j.etap.2005.05.007.
  • Bonansea, R. I., Marino, D. J., Bertrand, L., Wunderlin, D. A. & Amé, M. V. (2017). Tissue-specific bio-concentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environmental Toxicology and Chemistry, 36(7), 1764–1774. DOI: 10.1002/etc.3613.
  • Bouskill, N.J., Handy, R.D., Ford, T.E. & Galloway, T.S. (2006). Differentiating copper and arsenic toxicity using biochemical biomarkers in Asellus aquaticus and Dreissena polymorpha. Ecotoxicology and Environmental Safety, 65, 342–349. DOI: 10.1016/j.ecoenv.2005.07.027.
  • Brenner, L. (1992). Malathion. Journal of Pesticide Reform, 12, 29.
  • Canty, M.N., Hagger, J.A., Moore, R.T., Cooper, L. & Galloway, T.S. (2007). Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis. Marine Pollution Bulletin, 54, 396–402. DOI: 10.1016/j.marpolbul.2006.11.013.
  • Chandra, S. (2008).Toxic effect of malathion on acetylcholinesterase activity of liver, brain and gills of freshwater catfish Heteropneustes fossilis. Environment Conservation Journal, 9(3), 47-52.
  • Chowdhary, S. Bhattacharyya, R. & Banerjee, D. (2014). Acute organophosphorus poisoning. Clinica Chimica Acta, 431, 66–76. DOI: 10.1016/j.cca.2014.01.024.
  • Demirci, Ö., Güven, K., Asma, D., Öğüt, S. & Uğurlu, P. (2018). Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicology and Environmental Safety, 147, 749–758. DOI: 10.1016/j.ecoenv.2017.09.038.
  • Doran, W.J., Cope, W.G., Rada, R.G. & Sandheinrich, M.B. (2001). Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyriphos: implications for biomonitoring. Ecotoxicology and Environmental Safety, 49, 91–98
  • Dutour, R. & Poirier, D. (2017). Inhibitors of cytochrome P450 (CYP)1B1. European Journal of Medicinal Chemistry, 135, 296–306. DOI: 10.1016/j.ejmech.2017.04.042.
  • Eken, A., Endirlik, B.Ü., Bakır, E., Yay, A.H. & Baldemir, A. (2017). Histopathological effect of dimethoate on lung of rat and the protective role of Laurocerasus officinalis roem. (cherry laurel) fruit. Journal of Health Sciences, 26, 211-215. DOI: 10.9775/kvfd.2017.17748.
  • Enserink, M. (1999). Biological invaders sweep in. Science, 285, 1834–1836. DOI: 10.1126/science.285.5435.1834.
  • Filimonova, V., Nys, C., De Schamphelaere, K.A.C., Gonçalves, F., Marques, J.C., Gonçalves, A.M.M. & De Troch, M. (2018). Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa. Environmental Science and Pollution Research, 25, 22180–22195. DOI: 10.1007/s11356-018-2302-x.
  • Fulton, M.H. & Key, P.B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37-45. DOI: 10.1897/1551-5028(2001)020<0037:aiiefa>2.0.co;2.
  • Geering, Q. A. (1959). Systemic insecticides, a recent development. World Crops, 11, 141.
  • Gonzalez, F.J. (1990). Molecular genetics of the P-450 superfamily. Pharmacology & Therapeutics, 45, 1–38. DOI: 10.1016/0163-7258(90)90006-n.
  • Hill, E.F. & Fleming, W.J. (1982). Anticholinesterase poisoning of birds:field monitoring and diagnosis of acute poisoning. Environmental Toxicology and Chemistry, 1, 27–38. DOI: 10.1002/etc.5620010105.
  • Hjelle, J.T., Hazelton, G.A., Klaassen, C.D. & Hjelle, J.J. (1986). Glucuronidation and sulfation in rabbit kidney. Journal of Pharmacology and Experimental Therapeutics, 236, 150–156.
  • Horgan M.J. & Mills, E.L. (1997). Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): implications for freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 249–255. DOI: 10.1139/f96-276.
  • Juhel, G., Bayen, S., GOH, C. Lee, W.K. & Kelly, B.C. (2017). Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis. Environmental Toxicology and Chemistry, 36(2), 429–441. DOI: 10.1002/etc.3556.
  • Lebrun, J.D., De Jesus, K., Rouillac, L., Ravelli, M., Guenne, A. & Tournebize J. (2020). Single and combined effects of insecticides on multi-level biomarkers in the non-target amphipod Gammarus fossarum exposed to environmentally realistic levels. Aquatic Toxicology, 218, 105357. DOI: 10.1016/j.aquatox.2019.105357.
  • Lionetto, M.G, Caricato, R., Giordano M.E. & Schettino, T. (2004). Biomarker application for the study of chemical contamination risk on marine organisms in the Taranto marine coastal area. Chemistry and Ecology, 20(1), 333-343. DOI: 10.1080/02757540310001629215.
  • Nadji, S., Amrani, A., Mebarki, R. & Khebbeb, M.E. (2010). Acetylcholinesterase and catalase activities in several tissues of a bivalve mollusc (Ruditapes decussatus) fished from Mellah lagoon (North East of Algeria) after malathion exposure. Annals of Biological Research, 1(4), 138-144.
  • Nebbia, C. (2001). Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. The Veterinary Journal, 161(3), 238–252. DOI: 10.1053/tvjl.2000.0561
  • Ozretic, B. & Krajnovic-Ozretic, M. (1992). Esterase heterogeneity in mussel Mytilus galloprovincialis: effects of organophosphate and carbamate pesticides in vitro. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 103(1), 221-225. DOI: 10.1016/0742-8413(92)90255-6.
  • Pala, A., Serdar, O. & Aydın, R. (2020). The acute effect of malathion on acetylcholinesterase activity in Gammarus pulex(Freshwater Amphipoda). Acta Aquatica Turcica, 16(2), 202-208. DOI: 10.22392/actaquatr.628330.
  • Perret, M.C., Gerdeau, D. & Riviere, J.L. (1996). Use of esterase activities of the zebra mussel (Dresissena polymorpha Pallas) as a biomarker of organophosphate and carbamate pesticides contamination. Environmental Toxicology and Water Quality, 11(4), 307-312.
  • Petroianu, G.A. (2009). The Synthesis of Phosphor Ethers: Who Was Franz Anton Voegeli? Pharmazie, 64, 269-275. DOI: 10.1691/ph.2009.8244.
  • Rajini, A. & Revathy, K. (2015). Effect of combination pesticide on acetylcholine esterase activity in freshwater fish Danio rerio. International Journal of Pharma and Bio Sciences, 6(1), 1305–1310.
  • Ricciardi, F., Binelli, A. & Provini, A. (2006). Use of two biomarkers (CYP450 and acetylcholinesterase) in zebra mussel for the biomonitoring of Lake Maggiore (northern Italy). Ecotoxicology and Environmental Safety, 63(3), 406-412. DOI: 10.1016/j.ecoenv.2005.02.007.
  • Romani, R., Isani, G., De Santis, A., Giovannini, E. & Rosi, G. (2005). Effects of chlorpyrifos on the catalytic efficiency and expression level of acetylcholinesterases in the bivalve mollusk Scapharca inaequivalvis. Environmental Toxicology and Chemistry, 24, 2879-2886. DOI: 10.1897/04-555r3.1.
  • Serdar, O. (2021). Determination of the effect of cyfluthrin pesticide on zebra mussel (Dreissena polymorpha) by Some Antioxidant Enzyme Activities. Journal of Anatolian Environmental and Animal Sciences, 6(1), 77-83.
  • Serdar, O., Aydın, R. & Söylemez, H., (2021). Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences, 7(3), 462-471.
  • Sevim, C., Taghizadehghalehjoughi, A. & Kara, M. (2021). Effects of chlorpyrifos-methyl, chlormequat, deltamethrin, glyphosate, pirimiphos-methyl, tebuconazole and their mixture on oxidative stress and toxicity in HUVEC cell line. İstanbul Journal of Pharmacy, 51(2), 183-190. DOI: 10.26650/IstanbulJPharm.2021.881724.
  • Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. &
  • Sutter, T.R. (1996). Activation of chemically diverse procarcinogens by human cytochrome P4501B1. Cancer Research, 56, 2979–2984.
  • Sturm, A., da Silva de Assis, H.C. & Hansen, P.D. (1999). Cholines-terases of marine teleost fish: enzymological characterisation andpotential use in the monitoring of neurotoxic contamination. Marine Environmental Research, 47, 389–398.
  • Taleh, M., Dastjerdi, H.R., Naseri, B., Ebadollahi, A., Garjan, A.S. & Jahromi, K.T. (2021). Toxicity and biochemical effects of emamectin benzoate against Tuta absoluta (Meyrick) alone and in combination with some conventional insecticides. Physiological Entomology, 46, 210-217. DOI: 10.1111/phen.12360.
  • Tatar, S., Serdar, O. & Yildirim, N.C. (2019). Changes in Antioxidant and Detoxification Systems of the Freshwater Amphipod Gammarus pulex Exposed to Congo Red. Journal of Anatolian Environmental and Animal Sciences, 4(2), 76-81. DOI: 10.35229/jaes.542705.
  • Trevis, D., Habr, S.F., Varoli, F.M. & Bernardia, M.M. (2010). Acute toxicity of the organophosphorus pesticide diclorvos and the mix with the piretroid deltamethrin in Danio rerio and Hyphessobrycon bifasciatus. Boletim Do Instituto De Pesca, 36(1), 53-59.
  • Uçkun M. &. Özmen M. (2021). Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to the Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms. Environmental Toxicology and Chemistry, 40, 2846–2860. DOI: 10.1002/etc.5158.
  • Werck-Reichhart, D. & Didierjean, A.H.L. (2000). Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science, 5(3), 116-123. DOI: 10.1016/s1360-1385(00)01567-3.

Determination of the Combined Effect of Dimethoate and Malathion Pesticides on Dreissena polymorpha (Pallas, 1771) Using Cytochrome P450 and Acetylcholinesterase

Yıl 2022, , 417 - 424, 31.12.2022
https://doi.org/10.35229/jaes.1168122

Öz

In this study, cytochrome P450 (CYP1A1) and Acetylcholinesterase (AchE) activities were measured to reveal the toxicity of organophosphorus dimethoate and malathion active ingredient insecticide mixtures in Dreissena polymorpha. The lethal concentration (LC50) of dimethoate and malathion was calculated as 40.82±2.54 mg/L after 96 hours of exposure. D. polymorpha was exposed to three sublethal concentrations of dimethoate and malathion (ratio of 1/16, 1/8 and 1/4 to LC50 value) for 24 hours and 96 hours. CYP1A1 and AChE levels were measured in a microplate reader using the commercial kit. AChE activities were observed to decrease in all exposure groups after 96 hours compared to the control group. When the exposure times were compared, it was determined that there was no statistically significant change in enzyme activities at the end of the 96th hour. There was no statistically significant change in CYP1A1 levels at the end of 24 hours in all groups, but a decrease was observed after 96 hours compared to the control group (p<0.05). It has been determined that the toxic response of the combination of dimethoate and malathion can vary depending on their concentration. In conclusion, it was revealed that dimethoate and malathion mixtures inhibit AChE and CYP1A1 activities in D. polymorpha and these enzymes can be used as an effective biomarker.

Kaynakça

  • Abass, K. & Pelkonen, O. (2013). The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches. Toxicology in Vitro, 27, 1584–1588. DOI: 10.1016/j.tiv.2012.05.003.
  • Ashauer, R., Boxall, A. & Brown, C. (2006). Uptake and elimination of chlorpyrifos and pentachlorophenol into the freshwater amphipod Gammarus pulex. Archives of Environmental Contamination and Toxicology, 51, 542-548. DOI: 10.1007/s00244-005-0317-z.
  • Assini, F.L., Zanette, K.D., Brocardo, P.S., Pandolfo, P. & Rodrigues, A.L.S. (2005). Behavioral effects and ChE measures after acute and repeated administration of malathion in rats. Environmental Toxicology and Pharmacology, 20, 443–449. DOI: 10.1016/j.etap.2005.05.007.
  • Bonansea, R. I., Marino, D. J., Bertrand, L., Wunderlin, D. A. & Amé, M. V. (2017). Tissue-specific bio-concentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environmental Toxicology and Chemistry, 36(7), 1764–1774. DOI: 10.1002/etc.3613.
  • Bouskill, N.J., Handy, R.D., Ford, T.E. & Galloway, T.S. (2006). Differentiating copper and arsenic toxicity using biochemical biomarkers in Asellus aquaticus and Dreissena polymorpha. Ecotoxicology and Environmental Safety, 65, 342–349. DOI: 10.1016/j.ecoenv.2005.07.027.
  • Brenner, L. (1992). Malathion. Journal of Pesticide Reform, 12, 29.
  • Canty, M.N., Hagger, J.A., Moore, R.T., Cooper, L. & Galloway, T.S. (2007). Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis. Marine Pollution Bulletin, 54, 396–402. DOI: 10.1016/j.marpolbul.2006.11.013.
  • Chandra, S. (2008).Toxic effect of malathion on acetylcholinesterase activity of liver, brain and gills of freshwater catfish Heteropneustes fossilis. Environment Conservation Journal, 9(3), 47-52.
  • Chowdhary, S. Bhattacharyya, R. & Banerjee, D. (2014). Acute organophosphorus poisoning. Clinica Chimica Acta, 431, 66–76. DOI: 10.1016/j.cca.2014.01.024.
  • Demirci, Ö., Güven, K., Asma, D., Öğüt, S. & Uğurlu, P. (2018). Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicology and Environmental Safety, 147, 749–758. DOI: 10.1016/j.ecoenv.2017.09.038.
  • Doran, W.J., Cope, W.G., Rada, R.G. & Sandheinrich, M.B. (2001). Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyriphos: implications for biomonitoring. Ecotoxicology and Environmental Safety, 49, 91–98
  • Dutour, R. & Poirier, D. (2017). Inhibitors of cytochrome P450 (CYP)1B1. European Journal of Medicinal Chemistry, 135, 296–306. DOI: 10.1016/j.ejmech.2017.04.042.
  • Eken, A., Endirlik, B.Ü., Bakır, E., Yay, A.H. & Baldemir, A. (2017). Histopathological effect of dimethoate on lung of rat and the protective role of Laurocerasus officinalis roem. (cherry laurel) fruit. Journal of Health Sciences, 26, 211-215. DOI: 10.9775/kvfd.2017.17748.
  • Enserink, M. (1999). Biological invaders sweep in. Science, 285, 1834–1836. DOI: 10.1126/science.285.5435.1834.
  • Filimonova, V., Nys, C., De Schamphelaere, K.A.C., Gonçalves, F., Marques, J.C., Gonçalves, A.M.M. & De Troch, M. (2018). Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa. Environmental Science and Pollution Research, 25, 22180–22195. DOI: 10.1007/s11356-018-2302-x.
  • Fulton, M.H. & Key, P.B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37-45. DOI: 10.1897/1551-5028(2001)020<0037:aiiefa>2.0.co;2.
  • Geering, Q. A. (1959). Systemic insecticides, a recent development. World Crops, 11, 141.
  • Gonzalez, F.J. (1990). Molecular genetics of the P-450 superfamily. Pharmacology & Therapeutics, 45, 1–38. DOI: 10.1016/0163-7258(90)90006-n.
  • Hill, E.F. & Fleming, W.J. (1982). Anticholinesterase poisoning of birds:field monitoring and diagnosis of acute poisoning. Environmental Toxicology and Chemistry, 1, 27–38. DOI: 10.1002/etc.5620010105.
  • Hjelle, J.T., Hazelton, G.A., Klaassen, C.D. & Hjelle, J.J. (1986). Glucuronidation and sulfation in rabbit kidney. Journal of Pharmacology and Experimental Therapeutics, 236, 150–156.
  • Horgan M.J. & Mills, E.L. (1997). Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): implications for freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 249–255. DOI: 10.1139/f96-276.
  • Juhel, G., Bayen, S., GOH, C. Lee, W.K. & Kelly, B.C. (2017). Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis. Environmental Toxicology and Chemistry, 36(2), 429–441. DOI: 10.1002/etc.3556.
  • Lebrun, J.D., De Jesus, K., Rouillac, L., Ravelli, M., Guenne, A. & Tournebize J. (2020). Single and combined effects of insecticides on multi-level biomarkers in the non-target amphipod Gammarus fossarum exposed to environmentally realistic levels. Aquatic Toxicology, 218, 105357. DOI: 10.1016/j.aquatox.2019.105357.
  • Lionetto, M.G, Caricato, R., Giordano M.E. & Schettino, T. (2004). Biomarker application for the study of chemical contamination risk on marine organisms in the Taranto marine coastal area. Chemistry and Ecology, 20(1), 333-343. DOI: 10.1080/02757540310001629215.
  • Nadji, S., Amrani, A., Mebarki, R. & Khebbeb, M.E. (2010). Acetylcholinesterase and catalase activities in several tissues of a bivalve mollusc (Ruditapes decussatus) fished from Mellah lagoon (North East of Algeria) after malathion exposure. Annals of Biological Research, 1(4), 138-144.
  • Nebbia, C. (2001). Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. The Veterinary Journal, 161(3), 238–252. DOI: 10.1053/tvjl.2000.0561
  • Ozretic, B. & Krajnovic-Ozretic, M. (1992). Esterase heterogeneity in mussel Mytilus galloprovincialis: effects of organophosphate and carbamate pesticides in vitro. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 103(1), 221-225. DOI: 10.1016/0742-8413(92)90255-6.
  • Pala, A., Serdar, O. & Aydın, R. (2020). The acute effect of malathion on acetylcholinesterase activity in Gammarus pulex(Freshwater Amphipoda). Acta Aquatica Turcica, 16(2), 202-208. DOI: 10.22392/actaquatr.628330.
  • Perret, M.C., Gerdeau, D. & Riviere, J.L. (1996). Use of esterase activities of the zebra mussel (Dresissena polymorpha Pallas) as a biomarker of organophosphate and carbamate pesticides contamination. Environmental Toxicology and Water Quality, 11(4), 307-312.
  • Petroianu, G.A. (2009). The Synthesis of Phosphor Ethers: Who Was Franz Anton Voegeli? Pharmazie, 64, 269-275. DOI: 10.1691/ph.2009.8244.
  • Rajini, A. & Revathy, K. (2015). Effect of combination pesticide on acetylcholine esterase activity in freshwater fish Danio rerio. International Journal of Pharma and Bio Sciences, 6(1), 1305–1310.
  • Ricciardi, F., Binelli, A. & Provini, A. (2006). Use of two biomarkers (CYP450 and acetylcholinesterase) in zebra mussel for the biomonitoring of Lake Maggiore (northern Italy). Ecotoxicology and Environmental Safety, 63(3), 406-412. DOI: 10.1016/j.ecoenv.2005.02.007.
  • Romani, R., Isani, G., De Santis, A., Giovannini, E. & Rosi, G. (2005). Effects of chlorpyrifos on the catalytic efficiency and expression level of acetylcholinesterases in the bivalve mollusk Scapharca inaequivalvis. Environmental Toxicology and Chemistry, 24, 2879-2886. DOI: 10.1897/04-555r3.1.
  • Serdar, O. (2021). Determination of the effect of cyfluthrin pesticide on zebra mussel (Dreissena polymorpha) by Some Antioxidant Enzyme Activities. Journal of Anatolian Environmental and Animal Sciences, 6(1), 77-83.
  • Serdar, O., Aydın, R. & Söylemez, H., (2021). Effect of Beta-Cyfluthrin Pesticide on Zebra Mussel (Dressienna polymorpha). International Journal of Pure and Applied Sciences, 7(3), 462-471.
  • Sevim, C., Taghizadehghalehjoughi, A. & Kara, M. (2021). Effects of chlorpyrifos-methyl, chlormequat, deltamethrin, glyphosate, pirimiphos-methyl, tebuconazole and their mixture on oxidative stress and toxicity in HUVEC cell line. İstanbul Journal of Pharmacy, 51(2), 183-190. DOI: 10.26650/IstanbulJPharm.2021.881724.
  • Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. &
  • Sutter, T.R. (1996). Activation of chemically diverse procarcinogens by human cytochrome P4501B1. Cancer Research, 56, 2979–2984.
  • Sturm, A., da Silva de Assis, H.C. & Hansen, P.D. (1999). Cholines-terases of marine teleost fish: enzymological characterisation andpotential use in the monitoring of neurotoxic contamination. Marine Environmental Research, 47, 389–398.
  • Taleh, M., Dastjerdi, H.R., Naseri, B., Ebadollahi, A., Garjan, A.S. & Jahromi, K.T. (2021). Toxicity and biochemical effects of emamectin benzoate against Tuta absoluta (Meyrick) alone and in combination with some conventional insecticides. Physiological Entomology, 46, 210-217. DOI: 10.1111/phen.12360.
  • Tatar, S., Serdar, O. & Yildirim, N.C. (2019). Changes in Antioxidant and Detoxification Systems of the Freshwater Amphipod Gammarus pulex Exposed to Congo Red. Journal of Anatolian Environmental and Animal Sciences, 4(2), 76-81. DOI: 10.35229/jaes.542705.
  • Trevis, D., Habr, S.F., Varoli, F.M. & Bernardia, M.M. (2010). Acute toxicity of the organophosphorus pesticide diclorvos and the mix with the piretroid deltamethrin in Danio rerio and Hyphessobrycon bifasciatus. Boletim Do Instituto De Pesca, 36(1), 53-59.
  • Uçkun M. &. Özmen M. (2021). Evaluating Multiple Biochemical Markers in Xenopus laevis Tadpoles Exposed to the Pesticides Thiacloprid and Trifloxystrobin in Single and Mixed Forms. Environmental Toxicology and Chemistry, 40, 2846–2860. DOI: 10.1002/etc.5158.
  • Werck-Reichhart, D. & Didierjean, A.H.L. (2000). Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science, 5(3), 116-123. DOI: 10.1016/s1360-1385(00)01567-3.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Nuran Cikcikoglu Yildirim 0000-0003-3975-6705

Osman Serdar 0000-0003-1744-8883

Numan Yıldırım 0000-0003-1109-8106

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 29 Ağustos 2022
Kabul Tarihi 3 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Cikcikoglu Yildirim, N., Serdar, O., & Yıldırım, N. (2022). Dimethoate ve Malathion Pestisitlerinin Dreissena polymorpha (Pallas, 1771) Üzerindeki Kombine Etkisinin Sitokrom P450 ve Asetilkolinesteraz Kullanılarak Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 7(4), 417-424. https://doi.org/10.35229/jaes.1168122


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS