The Current Antimicrobial Status of the Major Bacterial Pathogens in Rainbow Trout
Yıl 2023,
, 1 - 8, 31.03.2023
Ezgi Dinçtürk
,
Tevfik Tansel Tanrıkul
,
Kaan Kumaş
Öz
Antimicrobial resistance is a global threat to several industries, in addition to public health. The misuse of antibiotics in aquaculture leads to the development of resistance and limits the effects of treatment. It is important to determine antimicrobial resistance and proper doses to decide on optimum treatment strategies to avoid excessive antibiotic use. In this study, the antimicrobial resistance of three important bacterial fish pathogens (Lactococcus garvieae, Vibrio anguillarum, and Yersinia ruckeri) was determined to antibiotics used mainly in rainbow trout farms. L.garvieae strains showed resistance to most antimicrobial agents, although V.anguillarum and Y.ruckeri strains were determined resistant to clindamycin, ampicillin, and penicillin G. The MIC values of the pathogens were determined by E-test strips which provide rapid and quantitative results for selected chemotherapeutics. This article provides valuable information on the antimicrobial resistance of the most important pathogenic organisms on rainbow trout farms. The results of this study will be representative of the effective treatment and preventive misuse of antibiotics.
Kaynakça
- Akaylı, T., Ürkü, Ç., & Çanak, Ö. (2013). Antimicrobial Susceptibilities of Gram-negative Bacteria Isolated from Cultured Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) (in Turkish with English abstract). Biyoloji Bilimleri Araştırma Dergisi, 6(2), 17-22.
- Allerberger, F., & Mittermayer, H. (2008). Antimicrobial stewardship. Clinical Microbiology & Infection, 14(3),197-199, 2008. Doi: 10.1111/j.1469-0691.2007.01929.x
- Austin, B. & Austin, D. A. (2007). Bacterial fish pathogens: Disease of farmed and wild fish, 4th ed., Chichester, UK: Springer Dordrecht Publishers. Doi: 10.1007/978-1-4020-6069-4
- Austin, B. & Austin, D. A. (2012). Bacterial fish pathogens: Disease of farmed and wild fish 5th ed., New York, USA: Springer Dordrecht Publishers. Doi: 10.1007/978-94-007-4884-2
- Balcı-Akova, S. (2015). Aquaculture and its distribution in Turkey. Journal of Aquaculture Engineering & Fisheries Research, 1(4), 160-190. Doi: 10.3153/jaefr15018
- Balta, F., Dengiz-Balta, Z., Özgümüş, O. B. & Çağırgan, H. (2016). The Antimicrobial resistance and investigation of Yersinia ruckeri from rainbow trout (Oncorhynchus mykiss) farms in the Eastern Black Sea Region (in Turkish with English abstract). Journal of Anatolian Environmental and Animal Sciences, 1(3), 72-76. Doi: 10.35229/jaes.280741
- Balta, F., & Dengiz-Balta, Z. (2017). Serotyping, genetic characterization and antimicrobial susceptibility determination of Vibrio anguillarum strains isolated from farmed rainbow trout (Oncorhynchus mykiss) in the eastern Black Sea (in Turkish with English abstract). Ankara Universitesi Veteriner Fakültesi Dergisi, 64, 321-328. DOI: 10.1501/Vetfak_0000002816
- Benkova, M., Soukup, O. & Marek, J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129(4), 806-822. Doi: 10.1111/jam.14704
- Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. Doi: 10.1038/nrmicro3380
- Diler, Ö., Altun, S., Adiloglu, A. K., Kubilay, A. & Isıklı, B. (2002). First occurrence of Streptococcosis affecting farmed rainbow trout (Oncorhynchus mykiss) in Turkey. Bulletin-European Association of Fish Pathologist, 22(1), 21-26.
- EUROSTAT (2019, Sep 07). Aquaculture statics. https://ec.europa.eu/eurostat/statisticsexplained
- Hughes, J. H., Biedenbach, D. J., Erwin, M. E. & Jones, R. N. (1993). E test as susceptibility test and epidemiologic tool for evaluation of Neisseria meningitidis isolates. Journal of Clinical Microbiology, 31(12), 3255-3259. Doi: 10.1128/jcm.31.12.3255-3259.1993
- Igbinosa, I. H. (2014). Antibiogram profiling and pathogenic status of Aeromonas species recovered from Chicken. Saudi Journal of Biological Sciences, 21(5), 481-485. Doi: 10.1016/j.sjbs.2014.06.003
- Ingram, G. A. (1980). Substances involved in the natural resistance of fish to infection–a review. Journal of Fish Biology, 16(1), 23-60. Doi: 10.1111/j.1095-8649.1980.tb03685.x
- Jilani, M. S. A., Murshed, M., Sultana, L. & Hasan, Z. (2008). Common clinically important aerobic bacteria and their antibiotic resistance pattern of Dhaka city and its vicinity. Bangladesh Medical Collage Journal, 14, 66-71.
- Kathleen, M. M., Samuel, L., Felecia, C., Reagan, E. L., Kasing, A., Lesley, M. & Toh, S. C. (2016). Antibiotic resistance of diverse bacteria from aquaculture in Borneo. International Journal of Microbiology, 2164761. Doi: 10.1155/2016/2164761
- Khan, Z. A., Siddiqui, M. F. & Park, S. (2019). Current and emerging methods of antibiotic susceptibility testing. Diagnostics, 9(2), 49. Doi: 10.3390/diagnostics9020049
- Kırhan, Ş., Göksoy, E. Ö., Kaya. & O, Tekbıyık, S. (2006). In-vitro antimicrobial susceptibility of pathogenic bacteria in rainbow trout (Oncorhynchus mykiss, Walbaum). Turkish Journal of Veterinary & Animal Sciences, 30(3), 337-341.
- Kubilay, A., Altun, S., Uluköy, G. & Diler, Ö. (2005). The Determination of Antimicrobial Susceptibilities of Lactococcus garvieae Strains (in Turkish with English abstract). Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 1(1), 39-48.
- Kum, C. & Sekkin, S. (2011). The immune system drugs in fish: immune function, immunoassay, drugs. In: Aral, F. & Doğu, Z. (Eds.), Recent advances in fish farms 169-210p, IntechOpen., Croatia. Doi: 10.5772/26869
- Lulijwa, R., Rupia, E. J. & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. Doi: 10.1111/raq.12344
- Lunden, T. & Bylund, G. (2000). The influence of in vitro and in vivo exposure to antibiotics on mitogen-induced proliferation of lymphoid cells in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunology, 10(5), 395-404. Doi: 10.1006/fsim.1999.0247
- Lunden, T., Lilius, E. M. & Bylund, G. (2002). Respiratory burst activity of rainbow trout (Oncorhynchus mykiss) phagocytes is modulated by antimicrobial drugs. Aquaculture, 207(3-4), 203-212. Doi: 10.1016/s0044-8486(01)00760-8
- Manage, P. M. (2018): Heavy use of antibiotics in aquaculture; emerging human and animal health problems–a review. Sri Lanka Journal of Aquatic Sciences, 23(1), 13-27. Doi: 10.4038/sljas.v23i1.7543
- Mathew, A. G., Cissell, R. & Liamthong, S. (2007). Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathogens & Disease, 4(2), 115-133. Doi: 10.1089/fpd.2006.0066
- Miftahussurur, M., Fauzia, K. A., Nusi, I. A., Steiawan, P. B., Syam, A. F., Waskito, L. A., Doohan, D., Ratnasari, N., Khomsan, A., Adnyana, I. K. & Yamaoka, Y. (2020). E-test versus agar dilution for antibiotic susceptibility testing of Helicobacter pylori: a comparison study. BMC Research Notes, 13(1), 1-6. Doi: 10.1186/s13104-019-4877-9
- Muziasari, W. I., Managaki, S., Parnanen, K., Karkman, A., Lyra, C., Tamminen, M., Suzuji, S. & Virta, M. (2014). Sulphonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment. PLoS One, 9, e92702. Doi: 10.1371/journal.pone.0092702
- Orozova, P., Chikova, V. & Sirakov, I. (2014). Diagnostics and antibiotic resistance of Yersinia ruckeri strains isolated from trout fish farms in Bulgaria. International Journal of Development Research, 4(12), 2727-2733.
- Pedersen, K., Tiainen, T. & Larsen, J. L. (1995). Antibiotic resistance of Vibrio anguillarum, in relation to serovar and plasmid contents. Acta Veterinaria Scandinavica, 36(1), 55-64. Doi: 10.1186/bf03547702
- Raissy, M. & Ansari, M. (2011). Antibiotic susceptibility of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) in Iran fish farms. African Journal of Biotechnology, 10(8), 1473-1476.
- Raissy, M. & Moumeni, M. (2016). Detection of antibiotic resistance genes in some Lactococcus garvieae strains isolated from infected rainbow trout. Iranian Journal of Fisheries Sciences, 15(1), 221-229.
- Roberts, R. J. (2012). Fish pathology 4th ed., Wiley-Blackwell Publishers, London, UK. Doi: 10.1111/jfd.12118
- Sader, H. S. & Pignatari, A. C. C. (1994). E test: a novel technique for antimicrobial susceptibility testing. Sao Paulo Medical Journal, 112(4), 635-638. Doi: 10.1590/s1516-31801994000400003
- Shahriar, A., Akter, T., Kobra, A. T., Emran, T. B., Mallick, J. & Dutta, M. (2019). Isolation of Pathogenic and Non-pathogenic Microbial Stains from Different Types of Sea Fish Samples and their Quality Assessment with Antibiogram Properties. Journal of advences in Microbiology, 19(1), 1-10, 2019. Doi: 10.9734/jamb/2019/v19i130185
- Sharma, I., Kumar, A. & Pramanik, A. K. (2017). Antibiotic sensitivity test of Aeromonads isolated from foods of animal origin including fish. Assam University Journal of Science and Technology, 5(1), 43-47.
- Sieroslawska, A., Terech-Majewska, E. & Siwicki, A. K. (2004). Impact of chemotherapeutics on the fish immune system. In: Siwicki, A. K., Antychowicz, J. & Szweda, W. (Eds.), Current Challenges in Fish Disease Prevention and Treatment, 227-235p, Wyd, IRS, Olsztyn.
- Stokes, E. J., Ridgway, G. L. & Wren, M. W. D. (1993). Laboratory control of antimicrobial chemotherapy. Clinical Microbiology, 7, 237-51.
- Terech-Majewska, E. & Siwicki, A. K. (2006). Influence of oxytetracycline on the metabolic and phagocyte activity of macrophages and the proliferative response of lymphocytes in Carp and European Catfish. Medycyna Weterynaryjna, 62(12), 1431-1434.
- Terech-Majewska, E. (2016). Improving disease prevention and treatment in controlled fish culture. Fisheries and Aquatic Life, 24 (3), 115-165. Doi: 10.1515/aopf-2016-0013
- Toranzo, A. E. (2004). Report about fish bacterial diseases: Mediterranean Aquaculture Laboratories, In: Alvarez-Pellitero, P., Barja ,J. L., Basurco, B., Berthe, F. & Toranzo, A. E. (Eds.), Mediterranean aquaculture diagnostic laboratories 49-89p, Santiago de Compostela, Spain.
- TUIK. (2020, November 10). https://data.tuik.gov.tr/Bulten/Index?p=Fishery-Products-2020-37252
- Vignesh, R., Karthikeyan, B. S., Periyasamy, N. & Devanathan, K. (2011). Antibiotics in aquaculture: an overview. South Asian Journal of Experimental Biology, 1(3), 114-120. Doi: 10.38150/sajeb.1(3).p114-120
- Wojtacka, J. (2007). The impact of oxytetracycline and lysozyme dimer (KLP-602) on immune processes and the pathomorphology of selected internal organs of Siberian sturgeon (Acipenser baeri, Brandt 1869) (in Polish). Doctoral dissertation, UWM Olsztyn, Poland.
Gökkuşağı Alabalığında Görülen Başlıca Bakteriyel Patojenlerin Mevcut Antimikrobiyal Durumu
Yıl 2023,
, 1 - 8, 31.03.2023
Ezgi Dinçtürk
,
Tevfik Tansel Tanrıkul
,
Kaan Kumaş
Öz
Antimikrobiyal direnç, halk sağlığı da dahil olmak üzere birçok endüstri için küresel bir tehdittir. Su ürünleri yetiştiriciliğinde antibiyotiklerin yanlış kullanımı direnç gelişimine neden olmakta ve tedavinin etkisini sınırlamaktadır. Antimikrobiyal direncin ve uygun dozajın tespit edilmesi lüzumsuz antibiyotik kullanımının azaltılmasıyla optimum tedavi stratejilerinin belirlenmesi için önemlidir. Bu çalışmada, önemli üç bakteriyel balık patojeninin (Lactococcus garvieae, Vibrio anguillarum, Yersinia ruckeri) yaygın olarak kullanılan antibiyotiklere karşı oluşturdukları antimikrobiyal direnç belirlenmiştir. L. garvieae suşlarının birçok antimikrobiyel ajanlara karşı direnç oluşturduğu, V. anguillarum ve Y. ruckeri suşlarının ise klindamisin, ampisilin ve penisilin G’ye karşı dirençli olduğu tespit edilmiştir. Patojenlerin MİK değerleri seçili kematörapotiklere karşı hızlı ve kantitatif sonuçlar veren E-test stripleri ile belirlenmiştir. Bu makale, gökkuşağı alabalığı çiftliklerindeki en önemli patojenik organizmaların antimikrobiyal direnci ile ilgili bilgi vermektedir. Bu çalışmadan elde edilen bulgular etkili bir tedavi ve yanlış antibiyotik kullanımının önlenmesi için örnek oluşturacaktır.
Kaynakça
- Akaylı, T., Ürkü, Ç., & Çanak, Ö. (2013). Antimicrobial Susceptibilities of Gram-negative Bacteria Isolated from Cultured Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) (in Turkish with English abstract). Biyoloji Bilimleri Araştırma Dergisi, 6(2), 17-22.
- Allerberger, F., & Mittermayer, H. (2008). Antimicrobial stewardship. Clinical Microbiology & Infection, 14(3),197-199, 2008. Doi: 10.1111/j.1469-0691.2007.01929.x
- Austin, B. & Austin, D. A. (2007). Bacterial fish pathogens: Disease of farmed and wild fish, 4th ed., Chichester, UK: Springer Dordrecht Publishers. Doi: 10.1007/978-1-4020-6069-4
- Austin, B. & Austin, D. A. (2012). Bacterial fish pathogens: Disease of farmed and wild fish 5th ed., New York, USA: Springer Dordrecht Publishers. Doi: 10.1007/978-94-007-4884-2
- Balcı-Akova, S. (2015). Aquaculture and its distribution in Turkey. Journal of Aquaculture Engineering & Fisheries Research, 1(4), 160-190. Doi: 10.3153/jaefr15018
- Balta, F., Dengiz-Balta, Z., Özgümüş, O. B. & Çağırgan, H. (2016). The Antimicrobial resistance and investigation of Yersinia ruckeri from rainbow trout (Oncorhynchus mykiss) farms in the Eastern Black Sea Region (in Turkish with English abstract). Journal of Anatolian Environmental and Animal Sciences, 1(3), 72-76. Doi: 10.35229/jaes.280741
- Balta, F., & Dengiz-Balta, Z. (2017). Serotyping, genetic characterization and antimicrobial susceptibility determination of Vibrio anguillarum strains isolated from farmed rainbow trout (Oncorhynchus mykiss) in the eastern Black Sea (in Turkish with English abstract). Ankara Universitesi Veteriner Fakültesi Dergisi, 64, 321-328. DOI: 10.1501/Vetfak_0000002816
- Benkova, M., Soukup, O. & Marek, J. (2020). Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 129(4), 806-822. Doi: 10.1111/jam.14704
- Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. Doi: 10.1038/nrmicro3380
- Diler, Ö., Altun, S., Adiloglu, A. K., Kubilay, A. & Isıklı, B. (2002). First occurrence of Streptococcosis affecting farmed rainbow trout (Oncorhynchus mykiss) in Turkey. Bulletin-European Association of Fish Pathologist, 22(1), 21-26.
- EUROSTAT (2019, Sep 07). Aquaculture statics. https://ec.europa.eu/eurostat/statisticsexplained
- Hughes, J. H., Biedenbach, D. J., Erwin, M. E. & Jones, R. N. (1993). E test as susceptibility test and epidemiologic tool for evaluation of Neisseria meningitidis isolates. Journal of Clinical Microbiology, 31(12), 3255-3259. Doi: 10.1128/jcm.31.12.3255-3259.1993
- Igbinosa, I. H. (2014). Antibiogram profiling and pathogenic status of Aeromonas species recovered from Chicken. Saudi Journal of Biological Sciences, 21(5), 481-485. Doi: 10.1016/j.sjbs.2014.06.003
- Ingram, G. A. (1980). Substances involved in the natural resistance of fish to infection–a review. Journal of Fish Biology, 16(1), 23-60. Doi: 10.1111/j.1095-8649.1980.tb03685.x
- Jilani, M. S. A., Murshed, M., Sultana, L. & Hasan, Z. (2008). Common clinically important aerobic bacteria and their antibiotic resistance pattern of Dhaka city and its vicinity. Bangladesh Medical Collage Journal, 14, 66-71.
- Kathleen, M. M., Samuel, L., Felecia, C., Reagan, E. L., Kasing, A., Lesley, M. & Toh, S. C. (2016). Antibiotic resistance of diverse bacteria from aquaculture in Borneo. International Journal of Microbiology, 2164761. Doi: 10.1155/2016/2164761
- Khan, Z. A., Siddiqui, M. F. & Park, S. (2019). Current and emerging methods of antibiotic susceptibility testing. Diagnostics, 9(2), 49. Doi: 10.3390/diagnostics9020049
- Kırhan, Ş., Göksoy, E. Ö., Kaya. & O, Tekbıyık, S. (2006). In-vitro antimicrobial susceptibility of pathogenic bacteria in rainbow trout (Oncorhynchus mykiss, Walbaum). Turkish Journal of Veterinary & Animal Sciences, 30(3), 337-341.
- Kubilay, A., Altun, S., Uluköy, G. & Diler, Ö. (2005). The Determination of Antimicrobial Susceptibilities of Lactococcus garvieae Strains (in Turkish with English abstract). Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 1(1), 39-48.
- Kum, C. & Sekkin, S. (2011). The immune system drugs in fish: immune function, immunoassay, drugs. In: Aral, F. & Doğu, Z. (Eds.), Recent advances in fish farms 169-210p, IntechOpen., Croatia. Doi: 10.5772/26869
- Lulijwa, R., Rupia, E. J. & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. Doi: 10.1111/raq.12344
- Lunden, T. & Bylund, G. (2000). The influence of in vitro and in vivo exposure to antibiotics on mitogen-induced proliferation of lymphoid cells in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunology, 10(5), 395-404. Doi: 10.1006/fsim.1999.0247
- Lunden, T., Lilius, E. M. & Bylund, G. (2002). Respiratory burst activity of rainbow trout (Oncorhynchus mykiss) phagocytes is modulated by antimicrobial drugs. Aquaculture, 207(3-4), 203-212. Doi: 10.1016/s0044-8486(01)00760-8
- Manage, P. M. (2018): Heavy use of antibiotics in aquaculture; emerging human and animal health problems–a review. Sri Lanka Journal of Aquatic Sciences, 23(1), 13-27. Doi: 10.4038/sljas.v23i1.7543
- Mathew, A. G., Cissell, R. & Liamthong, S. (2007). Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathogens & Disease, 4(2), 115-133. Doi: 10.1089/fpd.2006.0066
- Miftahussurur, M., Fauzia, K. A., Nusi, I. A., Steiawan, P. B., Syam, A. F., Waskito, L. A., Doohan, D., Ratnasari, N., Khomsan, A., Adnyana, I. K. & Yamaoka, Y. (2020). E-test versus agar dilution for antibiotic susceptibility testing of Helicobacter pylori: a comparison study. BMC Research Notes, 13(1), 1-6. Doi: 10.1186/s13104-019-4877-9
- Muziasari, W. I., Managaki, S., Parnanen, K., Karkman, A., Lyra, C., Tamminen, M., Suzuji, S. & Virta, M. (2014). Sulphonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment. PLoS One, 9, e92702. Doi: 10.1371/journal.pone.0092702
- Orozova, P., Chikova, V. & Sirakov, I. (2014). Diagnostics and antibiotic resistance of Yersinia ruckeri strains isolated from trout fish farms in Bulgaria. International Journal of Development Research, 4(12), 2727-2733.
- Pedersen, K., Tiainen, T. & Larsen, J. L. (1995). Antibiotic resistance of Vibrio anguillarum, in relation to serovar and plasmid contents. Acta Veterinaria Scandinavica, 36(1), 55-64. Doi: 10.1186/bf03547702
- Raissy, M. & Ansari, M. (2011). Antibiotic susceptibility of Lactococcus garvieae isolated from rainbow trout (Oncorhynchus mykiss) in Iran fish farms. African Journal of Biotechnology, 10(8), 1473-1476.
- Raissy, M. & Moumeni, M. (2016). Detection of antibiotic resistance genes in some Lactococcus garvieae strains isolated from infected rainbow trout. Iranian Journal of Fisheries Sciences, 15(1), 221-229.
- Roberts, R. J. (2012). Fish pathology 4th ed., Wiley-Blackwell Publishers, London, UK. Doi: 10.1111/jfd.12118
- Sader, H. S. & Pignatari, A. C. C. (1994). E test: a novel technique for antimicrobial susceptibility testing. Sao Paulo Medical Journal, 112(4), 635-638. Doi: 10.1590/s1516-31801994000400003
- Shahriar, A., Akter, T., Kobra, A. T., Emran, T. B., Mallick, J. & Dutta, M. (2019). Isolation of Pathogenic and Non-pathogenic Microbial Stains from Different Types of Sea Fish Samples and their Quality Assessment with Antibiogram Properties. Journal of advences in Microbiology, 19(1), 1-10, 2019. Doi: 10.9734/jamb/2019/v19i130185
- Sharma, I., Kumar, A. & Pramanik, A. K. (2017). Antibiotic sensitivity test of Aeromonads isolated from foods of animal origin including fish. Assam University Journal of Science and Technology, 5(1), 43-47.
- Sieroslawska, A., Terech-Majewska, E. & Siwicki, A. K. (2004). Impact of chemotherapeutics on the fish immune system. In: Siwicki, A. K., Antychowicz, J. & Szweda, W. (Eds.), Current Challenges in Fish Disease Prevention and Treatment, 227-235p, Wyd, IRS, Olsztyn.
- Stokes, E. J., Ridgway, G. L. & Wren, M. W. D. (1993). Laboratory control of antimicrobial chemotherapy. Clinical Microbiology, 7, 237-51.
- Terech-Majewska, E. & Siwicki, A. K. (2006). Influence of oxytetracycline on the metabolic and phagocyte activity of macrophages and the proliferative response of lymphocytes in Carp and European Catfish. Medycyna Weterynaryjna, 62(12), 1431-1434.
- Terech-Majewska, E. (2016). Improving disease prevention and treatment in controlled fish culture. Fisheries and Aquatic Life, 24 (3), 115-165. Doi: 10.1515/aopf-2016-0013
- Toranzo, A. E. (2004). Report about fish bacterial diseases: Mediterranean Aquaculture Laboratories, In: Alvarez-Pellitero, P., Barja ,J. L., Basurco, B., Berthe, F. & Toranzo, A. E. (Eds.), Mediterranean aquaculture diagnostic laboratories 49-89p, Santiago de Compostela, Spain.
- TUIK. (2020, November 10). https://data.tuik.gov.tr/Bulten/Index?p=Fishery-Products-2020-37252
- Vignesh, R., Karthikeyan, B. S., Periyasamy, N. & Devanathan, K. (2011). Antibiotics in aquaculture: an overview. South Asian Journal of Experimental Biology, 1(3), 114-120. Doi: 10.38150/sajeb.1(3).p114-120
- Wojtacka, J. (2007). The impact of oxytetracycline and lysozyme dimer (KLP-602) on immune processes and the pathomorphology of selected internal organs of Siberian sturgeon (Acipenser baeri, Brandt 1869) (in Polish). Doctoral dissertation, UWM Olsztyn, Poland.