Derleme
BibTex RIS Kaynak Göster

Histopathology as a Biomarker for Monitoring Aquatic Environments

Yıl 2023, , 183 - 190, 30.06.2023
https://doi.org/10.35229/jaes.1245431

Öz

Chemical monitoring of aquatic environments helps to measure the degree of contamination in waters. However, biomonitoring tools are needed in impact assessment studies to determine the effects of pollution. Evaluation of pollution effects on various organisms, including fish, can be done using biomarker responses. Different fish species have been investigated in various biochemical studies for this purpose. The International Council for the Exploration of the Sea (ICES) also includes histopathological evaluation in the set of biomarkers used for biological evaluation in various pollutant monitoring programs. The use of histopathological techniques allows the examination of specific target organs and cells affected by exposure to environmental chemicals. The indicators examined are frequently used in fish health studies to provide information about the chronic and nonlethal effects of pollutants on the organs of fish and to evaluate the resulting stress. Because histopathological changes in fish mainly depend on water quality. They are generally more common in the investigation of polluted water ecosystems, as they are good indicators for identifying altered or contaminated environments. Changes in fish metabolism and physiology also cause changes in organ morphology. These changes can be detected by histopathological examination. In addition, by using a scoring system, it is possible to determine the level of relationship between these changes and environmental stress factors. Lesions in the gills, liver, kidney and skin tissues are the most commonly used histopathological indicators in the evaluation of the health status of fish. For these reasons, histopathological examination is also accepted as the gold standard, especially in the identification of toxicological effects. This review aims to provide an overview of the importance of histopathology as a biomarker in monitoring aquatic environments

Kaynakça

  • Abdel-Moneim, A.M., Al Kahtani, M.A & Elmenshawy, O.M. (2012). Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments Saudi Arabia. Chemosphere, 88, 1028-1035. DOI: 10.1016/j.chemosphere.2012.04.001
  • Abiona, O.O., Anifowose, A.J., Awojide, S.H., Adebisi, O.C., Adesina, B.T. & Ipinmoroti, M.O. (2019). Histopathological biomarking changes in the internal organs of Tilapia (Oreochromis niloticus) and Catfish (Clarias gariepinus) exposed to heavy metals contamination from Dandaru pond, Ibadan, Nigeria. Journal of Taibah University for Science, 13(1), 903-911. DOI: 10.1080/16583655.2019.1658400
  • Baines, C., Lerebours, A., Thomas, F., Fort, J., Kreitsberg, R., Gentes, S., Meitern, R., Saks, L., Ujvari, B., Giraudeau, M. & Sepp, T. (2021). Linking pollution and cancer in aquatic environments: A review. Environment International, 149, 106391. DOI: 10.1016/j.envint.2021.106391
  • Braunbeck, T., Görge, G., Storch, V. & Roland, N. (1990). Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to γ-hexachlorocyclohexane. Ecotoxicology and Environmental Safety, 19(3), 355-374. DOI: 10.1016/0147-6513(90)90036-5
  • Briaudeau, T. (2019). A "biomarker + histopathology" tool box in Solea spp. for the assessment of the biological effects of pollution in the context of the EU Marine Strategy Framework Directive. International PhD Thesis, Department of Zoology and Animal Cell Biology Research Group: Cell Biology in Environmental Toxicology, Euskal Herriko Unibertsitatea, Plentzia, Spain, 252p.
  • Cardoso, R.L., Carvalho-Neta, R.N.F., Lealde Castro, A.C., Ferreira, C.F.C., Silva, M.H.L., Azevedo, J.W.J., Sobrinho, J.R.S.C. & Santo, D.M.S. (2018). Histological and genotoxic biomarkers in Prochilodus lacustris (Pisces, Prochilodontidae) for environmental assessment in a protected area in the northeast of Brazil. Bulletin of Environmental Contamination and Toxicology, 101, 570-579. DOI: 10.1007/s00128-018-2464-8
  • Dallas, L.J. & Jha, A.N. (2015). Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar Estuary, South West England. Marine Pollution Bulletin, 95(2), 618- 633. DOI: 10.1016/j.marpolbul.2015.03.014
  • Dalzochio, T., Zimmermann, G., Rodrigues, P., Petry, I.E., Gehlen, G. & Da Silva, L.B. (2016). The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review. International Aquatic Research, 8, 283-298. DOI: 10.1007/s40071-016-0147-9
  • Dane, H. & Şişman,T. (2020a). Effects of heavy metal pollution on hepatosomatic index and vital organ histology in Alburnus mossulensis from Karasu River. Turkish Journal of Veterinary & Animal Science, 44, 607-617. DOI: 10.3906/vet-1904-50
  • Dane, H. & Şişman, T. (2020b). A morphohistopathological study in the digestive tract of three fish species influenced with heavy metal pollution. Chemosphere, 242, 125212. DOI: 10.1016/j.chemosphere.2019.125212
  • Greenfield, B.K., Teh, S.J., Ross, J.R.M., Hunt, J., Zhang, G.H., Davis, J.A., Ichikawa, G., Crane, D., Hung, S.S.O., Deng, D.F., Teh, F.C. & Green, P.G. (2008). Contaminant concentrations and histopathological effects in Sacramento splittail (Pogonichthys macrolepidotus). Archives of Environmental Contamination and Toxicology, 55(2). 270-281. DOI: 10.1007/s00244-007-9112-3
  • Hinton, D.E. & Lauren, D.J. (1990). Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure, In: McCarthy, J.F., Shugart, L.R. (Ed.), Biomakers of Environmental Contamination, 17-57p, Lewis Publishers, Boca Raton, FL.
  • Hussain, B., Fatima,M., Al-Ghanim, H.A. & Mahboob, S. (2019). Environmentally induced nephrotoxicity and histopathological alternations in Wallago attu and Cirrhinus mirigla. Saudi Journal of Biological Sciences, 26, 752-757. DOI: 10.1016/j.sjbs.2019.02.003
  • Jaffer, N.S., Rabee, A.M. & Al-Chalabi, A.M.M. (2017). Biochemical and hematological parameters and histological alterations in fish Cyprinus carpio L. as biomarkers for water pollution with chlorpyrifos. Human and Ecological Risk Assessment, 23(3), 605-616. DOI: 10.1080/10807039.2016.1261626
  • Jahanbakhshi, A. & Hedayati, A. (2013). Gill histopathological changes in Great sturgeon after exposure to crude and water soluble fraction of diesel oil. Comparative Clinical Pathology, 22, 1083-1086. DOI: 10.1007/s00580-012-1531-5
  • Javed, M., Ahmad, I., Usmani, N. & Ahmad, M. (2016). Studies on biomarkers of oxidative stres and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere, 151, 210-219. DOI: 10.1016/j.chemosphere.2016.02.080
  • Khoshnood, Z. (2017). Effects of environmental pollution on fish: a short review. Transylvanian Review of Systematical and Ecological Research, 19(1), 49- 60. DOI: 10.1515/trser-2017-0005
  • Kroon, F., Streten, C. & Harries, S. (2017). A protocol for identifying suitable biomarkers to assess fish health: A systematic review. Plos One, 12(4), E0174762. DOI: 10.1371/journal.pone.0174762
  • Lam, P., (2009). Use of biomarkers in environmental monitoring. Ocean & Coastal Management, 52(7), 348-354. DOI: 10.1016/j.ocecoaman.2009.04.010
  • Lionetto, M.G., Caricato, R. & Giordano, M.E. (2021). Pollution biomarkers in the framework of marine biodiversity conservation: state of art and perspectives. Water, 13, 1847. Doi: 10.3390/w13131847
  • Luczynska, L., Paszczyk, B. & Luczynski, M.J. (2018). Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Ecotoxicology and Environmental Safety, 153, 60-67. DOI: 10.1016/j.ecoenv.2018.01.057
  • Malik, D.S., Sharma, A.K., Sharma, A.K., Thakur, R. & Sharma, M. (2020). A review on impact of water pollution on freshwater fish species and their aquatic environment. Advances in Environmental Pollution Management: WastewaterImpacts and Treatment Technologies, 1, 10-28. DOI: 10.26832/aesa-2020-aepm-02
  • Monserrat, J.M., Letts, R.E., Ferreira, J.L.R., VenturaLima, J., Amado, L.L., Rocha, A.M., Gorbi, S., Bocchetti, R., Benedetti, M. & Regoli, F. (2012). Biomarkers of oxidative stress: benefits and drawbacks for their application in biomonitoring of aquatic environments, In: Abele, D., Vazquez-Medina, J.P. & Zenteno-Savin, T. (Ed), Oxidative stress in aquatic ecosystems, 1st ed., 317-326p, Blackwell Publishing Ltd., Chichester, UK.
  • Naz, S., Hussain, R, Ullah, Q., Chatha, A.M.M., Shaheen, A. & Khan, R.U. (2021). Toxic effect of some heavy metals on hematology and histopathology of Major Carp (Catla catla). Environmental Science and Pollution Research. 28, 6533-6539. DOI: 10.1007/s11356-020-10980-0
  • Oliveira Ribeiro, C.A., Filipack, F., Mela, M., Silva, P.H., Randi, M.A.F., Costa, J.R.A. & Pelletier, E. (2006). Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin chloride. Environmental Research, 101, 74-80. DOI: 10.1016/j.envres.2005.11.005
  • Osman, A.G.M., Abd El Reheem, A.M, AbuelFadl, K.Y. & Gad El-Rab, A.G. (2010). Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science, 2(11), 1302-1311. DOI: 10.4236/ns.2010.211158
  • Parente, T.E.M. & Hauser Davies, A. (2014). The use of fish biomarkers in the evaluation of water pollution In: Almeida, E.A. & Ribeiro A.O. (Ed), Pollution and fish health in tropical ecosystems, 1st ed., 164-183p, CRC Press Taylor & Francis Group, Florida, USA.
  • Paul, S., Mandal, A., Bhattacharjee, P., Chakraborty, S., Paul,R. & Mukhopadhyay, B.K. (2019). Evaluation of water quality and toxicity after exposure of lead nitrate in freshwater fish, major source of water pollution. Egyptian Journal of Aquatic Research, 45, 345-351. DOI: 10.1016/j.ejar.2019.09.001
  • Poleksic, V., Lenhardt, M., Jaric, I., Djordjevic, D., Gacic, Z., Cvijanovic, G. & Raskovic, B. (2010). Liver, gills and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environmental Toxicology and Chemistry, 29(3), 515-21. DOI: 10.1002/etc.82
  • Raskovic, B., Jaric, I., Koko, V., Spasic, M., Dulic, Z., Markovic, Z. & Poleksic, V. (2013). Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture. Central European Journal of Biology, 8 (10), 975-985. DOI: 10.2478/s11535-013-0220-y
  • Raskovic, B. & Poleksic, V. (2017). Fish histopathology as biomarker in ecotoxicology, In: Berillis, P. (Ed), Trends in fisheries and qquatic qnimal health, 1st ed., 155-181p. Bentham Science Publishers, Sharjah, UAE.
  • Ratn, A., Prasad, R., Awasthi, Y., Kumar, M., Misra, A. & Trivedi, S.P. (2018). Zn2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793). Ecotoxicology and Environmental Safety, 151, 10-20. DOI: 10.1016/j.ecoenv.2017.12.058
  • Reddy P.B. (2012). Histopathogical studies as potential and direct biomarkers of pollution. Trends in Life Sciences, 1(1), 27-31.
  • Reddy P.B. & Rawat, S.S. (2013). Assessment of aquatic pollution using histopathology in fish as a protocol. International Research Journal of Environment Science, 2(8), 79-82.
  • Ribeiro, C.A.O. & Narciso, M.F. (2014). Histopathological markers in fish health assessment. In: Almeida, E.A. & Ribeiro A.O. (Ed), Pollution and fish health in tropical ecosystems, 1st ed., 206-242p, CRC Press Taylor & Francis Group, Florida, USA.
  • Salamat, N., Soleimani, Z., Safahieh, E., Savari, A. & Ronagh, M.T. (2013). Using histopathological changes as a biomarker to trace contamination loading of Musa Creeks (Persian Gulf). Toxicologic Pathology, 41, 913-920. DOI: 10.1177/0192623312468515
  • Salamat, N. & Zarie, M. (2016). Fish histopathology as a tool for use in marine environment monitoring: a review. Comparative Clinical Pathology, 25, 1273-1278. DOI: 10.1007/s00580-014-2037-0
  • Saleh, Y.S. & Marie, M.A.S. (2016). Use of Arius thalassinus fish in a pollution biomonitoring study, applying combined oxidative stress, hematology, biochemical and histopathological biomarkers: A baseline field study. Marine Pollution Bulletin, 10, 6308-322. DOI: 10.1016/j.marpolbul.2016.03.030
  • Saraiva, A., Costa, J., Serrão, J., Cruz, C. & Eiras, J.C. (2015). A histology based fish health assessment of farmed sea bass (Dicentrarchus labrax L.). Aquaculture, 448, 375-381. DOI: 10.1016/j.aquaculture.2015.06.028
  • Savassi, L.A., Paschoalini, A.L., Arantes, F.P., Rizzo, E. & Bazzoli, N. (2020). Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. Environmental Monitoring and Assessment, 192 (542). DOI: 10.1007/s10661- 020-08515-8
  • Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H. & Negele, R.D. (2004). Toxic effects of the nonsteroidal anti-inflammatory drug diclofenac. Part I. histopathological alterations and bioaccumulation in Rainbow trout. Aquatic Toxicology, 68, 141-150. DOI: 10.1016/j.aquatox.2004.03.014
  • Steckert, L.D., Cardoso, L., Jeronimo, G.T., Padua, S.B. & Martins, M.L. (2018). Investigation of farmed Nile tilapia health through histopathology. Aquaculture, 486, 161-169. DOI: 10.1016/j.aquaculture.2017.12.021
  • Stentiford, G.D., Massoud, M.S., Al-Mudhhi, S., AlSarawi, M.A., Al-Enezi, M. & Lyons, B.P. (2014). Histopathological survey of potential biomarkers for the assessment of contaminant related biological effects in species of fish and shellfish collected from Kuwait Bay, Arabian Gulf. Marine Environmental Research, 98, 60-67. DOI: 10.1016/j.marenvres.2014.03.005
  • Strzyzewska, E., Szarek, J. & Babinska, I. (2016). Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: a review. Veterinarni Medicina, 61(3), 123-132. DOI: 10.17221/8763-VETMED
  • Sweidan, A.H., El Bendary, N., Hegazy, O.M., Hassanien, A.E. & Snasel, V. (2015). Water Pollution Detection System based on Fish Gills as a Biomarker. Procedia Computer Science, 65, 601- 611. DOI: 10.1016/j.procs.2015.09.004
  • Van der Oost, R., Beyer, J. & Vermeulen, N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57-149. Doi: 10.1016/S1382- 6689(02)00126-6
  • Van Dyk, J.C., Cochrane, M.J. & Wagenaar, G.M. (2012). Liver histopathology of the sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution. Chemosphere, 87, 301-311. DOI: 10.1016/j.chemosphere.2011.12.002
  • Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C., Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561. DOI: 10.1038/nature09440.
  • Wright, D.A. & Welbourn, P. (2002). Environmental toxicology. 1st ed., Cambridge University Press, Cambridge, UK, 630p.
  • Yancheva, V., Velcheva, I., Stoyanova, S. & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Applied Ecology and Environmental Research, 14(1), 47-75. DOI: 10.15666/aeer/1401_047075
  • Zeitoun M.M. & Mehana, E.E. (2014). Impact of water pollution with heavy metals on fish health: overview and updates. Global Veterinaria, 12(2), 219-231. DOI: 10.5829/idosi.gv.2014.12.02.82219.

Sucul Ortamların İzlenmesinde Biyobelirteç Olarak Histopatoloji

Yıl 2023, , 183 - 190, 30.06.2023
https://doi.org/10.35229/jaes.1245431

Öz

Sucul ortamların kimyasal açıdan izlenmesi, sulardaki kirlenme derecesinin ölçülmesine yardımcı olmaktadır. Bununla birlikte kirliliğin etkilerinin belirlenmesi için yapılan etki değerlendirme çalışmalarında biyoizleme araçlarına gereksinim duyulmaktadır. Balıklar dahil olmak üzere çeşitli organizmalar üzerindeki kirlilik etkilerinin değerlendirilmesi biyobelirteç yanıtlar kullanılarak yapılabilmektedir. Farklı balık türleri bu amaçla çeşitli biyokimyasal çalışmalar kapsamında araştırılmıştır. Uluslararası Deniz Keşif Konseyi (ICES) kirleticileri izleme programlarında biyolojik değerlendirme amacıyla uyguladığı biyobelirteçler setinde histopatolojik değerlendirmeye de yer vermektedir. Histopatolojik tekniklerin kullanılması, çevresel kimyasallara maruz kalma ile etkilenen belirli hedef organların ve hücrelerin incelenmesine olanak tanımaktadır. İncelenen göstergeler kirletici maddelerin, balıkların organları üzerindeki kronik ve ölümcül olmayan etkileri hakkında bilgi sağlayabilmesi ve oluşan stresinin değerlendirilmesi amaçlarıyla balık sağlığı çalışmalarında sıklıkla kullanılmaktadır. Çünkü balıklardaki histopatolojik değişiklikler esas olarak su kalitesine bağlıdır. Değişmiş veya kirlenmiş ortamların tanımlanması açısından faydalı göstergeler olduklarından, genellikle kirli su ekosistemlerinin araştırılmasında kullanımları daha yaygındır. Balık metabolizması ve fizyolojisinde meydana gelen değişiklikler organ morfolojisinde de değişikliklere neden olmaktadır. Bu değişiklikler histopatolojik inceleme yoluyla da saptanabilmektedir. Ayrıca bir skorlama sisteminin kullanılmasıyla bu değişikliklerin çevresel stres faktörleriyle ilişki düzeyinin saptanması da mümkün olmaktadır. Solungaçlar, karaciğer, böbrek ve deri dokularında oluşan lezyonlar balıkların sağlık durumunun değerlendirilmesinde en sık kullanılan histopatolojik göstergelerdir. Bu nedenlerle, özellikle toksikolojik etkilerin tanımlanmasında histopatolojik inceleme altın standart olarak da kabul edilmektedir. Bu derleme, sucul ortamların izlenmesinde bir biyobelirteç olarak histopatolojinin önemine dair genel bir değerlendirme sunmayı amaçlamaktadır.

Kaynakça

  • Abdel-Moneim, A.M., Al Kahtani, M.A & Elmenshawy, O.M. (2012). Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments Saudi Arabia. Chemosphere, 88, 1028-1035. DOI: 10.1016/j.chemosphere.2012.04.001
  • Abiona, O.O., Anifowose, A.J., Awojide, S.H., Adebisi, O.C., Adesina, B.T. & Ipinmoroti, M.O. (2019). Histopathological biomarking changes in the internal organs of Tilapia (Oreochromis niloticus) and Catfish (Clarias gariepinus) exposed to heavy metals contamination from Dandaru pond, Ibadan, Nigeria. Journal of Taibah University for Science, 13(1), 903-911. DOI: 10.1080/16583655.2019.1658400
  • Baines, C., Lerebours, A., Thomas, F., Fort, J., Kreitsberg, R., Gentes, S., Meitern, R., Saks, L., Ujvari, B., Giraudeau, M. & Sepp, T. (2021). Linking pollution and cancer in aquatic environments: A review. Environment International, 149, 106391. DOI: 10.1016/j.envint.2021.106391
  • Braunbeck, T., Görge, G., Storch, V. & Roland, N. (1990). Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to γ-hexachlorocyclohexane. Ecotoxicology and Environmental Safety, 19(3), 355-374. DOI: 10.1016/0147-6513(90)90036-5
  • Briaudeau, T. (2019). A "biomarker + histopathology" tool box in Solea spp. for the assessment of the biological effects of pollution in the context of the EU Marine Strategy Framework Directive. International PhD Thesis, Department of Zoology and Animal Cell Biology Research Group: Cell Biology in Environmental Toxicology, Euskal Herriko Unibertsitatea, Plentzia, Spain, 252p.
  • Cardoso, R.L., Carvalho-Neta, R.N.F., Lealde Castro, A.C., Ferreira, C.F.C., Silva, M.H.L., Azevedo, J.W.J., Sobrinho, J.R.S.C. & Santo, D.M.S. (2018). Histological and genotoxic biomarkers in Prochilodus lacustris (Pisces, Prochilodontidae) for environmental assessment in a protected area in the northeast of Brazil. Bulletin of Environmental Contamination and Toxicology, 101, 570-579. DOI: 10.1007/s00128-018-2464-8
  • Dallas, L.J. & Jha, A.N. (2015). Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar Estuary, South West England. Marine Pollution Bulletin, 95(2), 618- 633. DOI: 10.1016/j.marpolbul.2015.03.014
  • Dalzochio, T., Zimmermann, G., Rodrigues, P., Petry, I.E., Gehlen, G. & Da Silva, L.B. (2016). The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review. International Aquatic Research, 8, 283-298. DOI: 10.1007/s40071-016-0147-9
  • Dane, H. & Şişman,T. (2020a). Effects of heavy metal pollution on hepatosomatic index and vital organ histology in Alburnus mossulensis from Karasu River. Turkish Journal of Veterinary & Animal Science, 44, 607-617. DOI: 10.3906/vet-1904-50
  • Dane, H. & Şişman, T. (2020b). A morphohistopathological study in the digestive tract of three fish species influenced with heavy metal pollution. Chemosphere, 242, 125212. DOI: 10.1016/j.chemosphere.2019.125212
  • Greenfield, B.K., Teh, S.J., Ross, J.R.M., Hunt, J., Zhang, G.H., Davis, J.A., Ichikawa, G., Crane, D., Hung, S.S.O., Deng, D.F., Teh, F.C. & Green, P.G. (2008). Contaminant concentrations and histopathological effects in Sacramento splittail (Pogonichthys macrolepidotus). Archives of Environmental Contamination and Toxicology, 55(2). 270-281. DOI: 10.1007/s00244-007-9112-3
  • Hinton, D.E. & Lauren, D.J. (1990). Liver structural alterations accompanying chronic toxicity in fishes: potential biomarkers of exposure, In: McCarthy, J.F., Shugart, L.R. (Ed.), Biomakers of Environmental Contamination, 17-57p, Lewis Publishers, Boca Raton, FL.
  • Hussain, B., Fatima,M., Al-Ghanim, H.A. & Mahboob, S. (2019). Environmentally induced nephrotoxicity and histopathological alternations in Wallago attu and Cirrhinus mirigla. Saudi Journal of Biological Sciences, 26, 752-757. DOI: 10.1016/j.sjbs.2019.02.003
  • Jaffer, N.S., Rabee, A.M. & Al-Chalabi, A.M.M. (2017). Biochemical and hematological parameters and histological alterations in fish Cyprinus carpio L. as biomarkers for water pollution with chlorpyrifos. Human and Ecological Risk Assessment, 23(3), 605-616. DOI: 10.1080/10807039.2016.1261626
  • Jahanbakhshi, A. & Hedayati, A. (2013). Gill histopathological changes in Great sturgeon after exposure to crude and water soluble fraction of diesel oil. Comparative Clinical Pathology, 22, 1083-1086. DOI: 10.1007/s00580-012-1531-5
  • Javed, M., Ahmad, I., Usmani, N. & Ahmad, M. (2016). Studies on biomarkers of oxidative stres and associated genotoxicity and histopathology in Channa punctatus from heavy metal polluted canal. Chemosphere, 151, 210-219. DOI: 10.1016/j.chemosphere.2016.02.080
  • Khoshnood, Z. (2017). Effects of environmental pollution on fish: a short review. Transylvanian Review of Systematical and Ecological Research, 19(1), 49- 60. DOI: 10.1515/trser-2017-0005
  • Kroon, F., Streten, C. & Harries, S. (2017). A protocol for identifying suitable biomarkers to assess fish health: A systematic review. Plos One, 12(4), E0174762. DOI: 10.1371/journal.pone.0174762
  • Lam, P., (2009). Use of biomarkers in environmental monitoring. Ocean & Coastal Management, 52(7), 348-354. DOI: 10.1016/j.ocecoaman.2009.04.010
  • Lionetto, M.G., Caricato, R. & Giordano, M.E. (2021). Pollution biomarkers in the framework of marine biodiversity conservation: state of art and perspectives. Water, 13, 1847. Doi: 10.3390/w13131847
  • Luczynska, L., Paszczyk, B. & Luczynski, M.J. (2018). Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Ecotoxicology and Environmental Safety, 153, 60-67. DOI: 10.1016/j.ecoenv.2018.01.057
  • Malik, D.S., Sharma, A.K., Sharma, A.K., Thakur, R. & Sharma, M. (2020). A review on impact of water pollution on freshwater fish species and their aquatic environment. Advances in Environmental Pollution Management: WastewaterImpacts and Treatment Technologies, 1, 10-28. DOI: 10.26832/aesa-2020-aepm-02
  • Monserrat, J.M., Letts, R.E., Ferreira, J.L.R., VenturaLima, J., Amado, L.L., Rocha, A.M., Gorbi, S., Bocchetti, R., Benedetti, M. & Regoli, F. (2012). Biomarkers of oxidative stress: benefits and drawbacks for their application in biomonitoring of aquatic environments, In: Abele, D., Vazquez-Medina, J.P. & Zenteno-Savin, T. (Ed), Oxidative stress in aquatic ecosystems, 1st ed., 317-326p, Blackwell Publishing Ltd., Chichester, UK.
  • Naz, S., Hussain, R, Ullah, Q., Chatha, A.M.M., Shaheen, A. & Khan, R.U. (2021). Toxic effect of some heavy metals on hematology and histopathology of Major Carp (Catla catla). Environmental Science and Pollution Research. 28, 6533-6539. DOI: 10.1007/s11356-020-10980-0
  • Oliveira Ribeiro, C.A., Filipack, F., Mela, M., Silva, P.H., Randi, M.A.F., Costa, J.R.A. & Pelletier, E. (2006). Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin chloride. Environmental Research, 101, 74-80. DOI: 10.1016/j.envres.2005.11.005
  • Osman, A.G.M., Abd El Reheem, A.M, AbuelFadl, K.Y. & Gad El-Rab, A.G. (2010). Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science, 2(11), 1302-1311. DOI: 10.4236/ns.2010.211158
  • Parente, T.E.M. & Hauser Davies, A. (2014). The use of fish biomarkers in the evaluation of water pollution In: Almeida, E.A. & Ribeiro A.O. (Ed), Pollution and fish health in tropical ecosystems, 1st ed., 164-183p, CRC Press Taylor & Francis Group, Florida, USA.
  • Paul, S., Mandal, A., Bhattacharjee, P., Chakraborty, S., Paul,R. & Mukhopadhyay, B.K. (2019). Evaluation of water quality and toxicity after exposure of lead nitrate in freshwater fish, major source of water pollution. Egyptian Journal of Aquatic Research, 45, 345-351. DOI: 10.1016/j.ejar.2019.09.001
  • Poleksic, V., Lenhardt, M., Jaric, I., Djordjevic, D., Gacic, Z., Cvijanovic, G. & Raskovic, B. (2010). Liver, gills and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environmental Toxicology and Chemistry, 29(3), 515-21. DOI: 10.1002/etc.82
  • Raskovic, B., Jaric, I., Koko, V., Spasic, M., Dulic, Z., Markovic, Z. & Poleksic, V. (2013). Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture. Central European Journal of Biology, 8 (10), 975-985. DOI: 10.2478/s11535-013-0220-y
  • Raskovic, B. & Poleksic, V. (2017). Fish histopathology as biomarker in ecotoxicology, In: Berillis, P. (Ed), Trends in fisheries and qquatic qnimal health, 1st ed., 155-181p. Bentham Science Publishers, Sharjah, UAE.
  • Ratn, A., Prasad, R., Awasthi, Y., Kumar, M., Misra, A. & Trivedi, S.P. (2018). Zn2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793). Ecotoxicology and Environmental Safety, 151, 10-20. DOI: 10.1016/j.ecoenv.2017.12.058
  • Reddy P.B. (2012). Histopathogical studies as potential and direct biomarkers of pollution. Trends in Life Sciences, 1(1), 27-31.
  • Reddy P.B. & Rawat, S.S. (2013). Assessment of aquatic pollution using histopathology in fish as a protocol. International Research Journal of Environment Science, 2(8), 79-82.
  • Ribeiro, C.A.O. & Narciso, M.F. (2014). Histopathological markers in fish health assessment. In: Almeida, E.A. & Ribeiro A.O. (Ed), Pollution and fish health in tropical ecosystems, 1st ed., 206-242p, CRC Press Taylor & Francis Group, Florida, USA.
  • Salamat, N., Soleimani, Z., Safahieh, E., Savari, A. & Ronagh, M.T. (2013). Using histopathological changes as a biomarker to trace contamination loading of Musa Creeks (Persian Gulf). Toxicologic Pathology, 41, 913-920. DOI: 10.1177/0192623312468515
  • Salamat, N. & Zarie, M. (2016). Fish histopathology as a tool for use in marine environment monitoring: a review. Comparative Clinical Pathology, 25, 1273-1278. DOI: 10.1007/s00580-014-2037-0
  • Saleh, Y.S. & Marie, M.A.S. (2016). Use of Arius thalassinus fish in a pollution biomonitoring study, applying combined oxidative stress, hematology, biochemical and histopathological biomarkers: A baseline field study. Marine Pollution Bulletin, 10, 6308-322. DOI: 10.1016/j.marpolbul.2016.03.030
  • Saraiva, A., Costa, J., Serrão, J., Cruz, C. & Eiras, J.C. (2015). A histology based fish health assessment of farmed sea bass (Dicentrarchus labrax L.). Aquaculture, 448, 375-381. DOI: 10.1016/j.aquaculture.2015.06.028
  • Savassi, L.A., Paschoalini, A.L., Arantes, F.P., Rizzo, E. & Bazzoli, N. (2020). Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. Environmental Monitoring and Assessment, 192 (542). DOI: 10.1007/s10661- 020-08515-8
  • Schwaiger, J., Ferling, H., Mallow, U., Wintermayr, H. & Negele, R.D. (2004). Toxic effects of the nonsteroidal anti-inflammatory drug diclofenac. Part I. histopathological alterations and bioaccumulation in Rainbow trout. Aquatic Toxicology, 68, 141-150. DOI: 10.1016/j.aquatox.2004.03.014
  • Steckert, L.D., Cardoso, L., Jeronimo, G.T., Padua, S.B. & Martins, M.L. (2018). Investigation of farmed Nile tilapia health through histopathology. Aquaculture, 486, 161-169. DOI: 10.1016/j.aquaculture.2017.12.021
  • Stentiford, G.D., Massoud, M.S., Al-Mudhhi, S., AlSarawi, M.A., Al-Enezi, M. & Lyons, B.P. (2014). Histopathological survey of potential biomarkers for the assessment of contaminant related biological effects in species of fish and shellfish collected from Kuwait Bay, Arabian Gulf. Marine Environmental Research, 98, 60-67. DOI: 10.1016/j.marenvres.2014.03.005
  • Strzyzewska, E., Szarek, J. & Babinska, I. (2016). Morphologic evaluation of the gills as a tool in the diagnostics of pathological conditions in fish and pollution in the aquatic environment: a review. Veterinarni Medicina, 61(3), 123-132. DOI: 10.17221/8763-VETMED
  • Sweidan, A.H., El Bendary, N., Hegazy, O.M., Hassanien, A.E. & Snasel, V. (2015). Water Pollution Detection System based on Fish Gills as a Biomarker. Procedia Computer Science, 65, 601- 611. DOI: 10.1016/j.procs.2015.09.004
  • Van der Oost, R., Beyer, J. & Vermeulen, N.P.E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57-149. Doi: 10.1016/S1382- 6689(02)00126-6
  • Van Dyk, J.C., Cochrane, M.J. & Wagenaar, G.M. (2012). Liver histopathology of the sharptooth catfish Clarias gariepinus as a biomarker of aquatic pollution. Chemosphere, 87, 301-311. DOI: 10.1016/j.chemosphere.2011.12.002
  • Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Reidy Liermann, C., Davies, P.M. (2010) Global threats to human water security and river biodiversity. Nature, 467, 555-561. DOI: 10.1038/nature09440.
  • Wright, D.A. & Welbourn, P. (2002). Environmental toxicology. 1st ed., Cambridge University Press, Cambridge, UK, 630p.
  • Yancheva, V., Velcheva, I., Stoyanova, S. & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Applied Ecology and Environmental Research, 14(1), 47-75. DOI: 10.15666/aeer/1401_047075
  • Zeitoun M.M. & Mehana, E.E. (2014). Impact of water pollution with heavy metals on fish health: overview and updates. Global Veterinaria, 12(2), 219-231. DOI: 10.5829/idosi.gv.2014.12.02.82219.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ahmet Erdem Dönmez 0000-0001-5460-1811

Erken Görünüm Tarihi 13 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 1 Şubat 2023
Kabul Tarihi 23 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dönmez, A. E. (2023). Sucul Ortamların İzlenmesinde Biyobelirteç Olarak Histopatoloji. Journal of Anatolian Environmental and Animal Sciences, 8(2), 183-190. https://doi.org/10.35229/jaes.1245431


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS