Araştırma Makalesi
BibTex RIS Kaynak Göster

Sağlıklı ve Diyabetli Sıçanlarda Beyin ve Pankreas Dokusundan İzole Edilen Eksozom -miRNA -9 ve -146 Profillerinin Karşılaştırılması

Yıl 2023, , 671 - 678, 31.12.2023
https://doi.org/10.35229/jaes.1358883

Öz

Eksozom adı verilen küçük veziküllerin dokulardaki gen ekspresyonunu düzenlediği ve birçok hastalığın patogenezinde rol oynadığı bulunmuştur. Bu nedenle, bu çalışma ekzozomların diyabet ve buna bağlı mikroRNA (miRNA) değişimi üzerindeki etkilerini belirlemeyi amaçlamıştır. Bu amaçla intraperitoneal olarak nikotinamid (120 mg/kg) uygulandı (ip.) ve 15 dakika sonra Streptozotosin (50 mg / kg) ip uygulandı. Glikoz seviyesi 126 mg/dL ve üzeri olan sıçanlar Tip 2 diyabet olarak kabul edildi. 21 Günün sonunda şeker hastalarının ve sağlıklı grupların sıçanlarının (n:10) pankreas ve beyin dokularından eksozomlar elde edildi. Daha sonra her iki grubun biyokimyasal analizleri ve oksidatif stres parametreleri incelendi. Ayrıca miRNA değişiklikleri incelenmiş ve elde edilen sonuçlar istatistiksel olarak değerlendirilmiştir. Hem beyin hem de pankreas ekzozomlarında toplam oksidatif durum (TOS) ve Laktat dehidrojenaz (LDH) seviyelerinde anlamlı bir artış bulundu. Total antioksidan düzeyinin (TAC) kontrol grubuna göre azaldığı gözlendi (P<0.05). Gerçek Zamanlı PCR ile yapılan inceleme sonucunda hem beyin dokusunda hem de pankreas dokusunda miRNA -9 düzeylerinin önemli ölçüde arttığı ve miR-146 gen düzeylerinin önemli ölçüde aşağı regüle edildiği belirlendi (P<0.05).
Sonuç olarak, diyabetik sıçanların beyin ve pankreas dokusu eksozomlarında miRNA -9 ve -146 seviyelerinde önemli değişiklikler meydana geldi. Bu sonuçlar, diyabetik rat eksozomların miRNA düzeyinde değişikliğe neden olduğu ve bu değişikliğin nöroinflamasyonla ilişkili olabileceğini göstermektedir.

Kaynakça

  • Ashrafizadeh, M., Kumar, A.P., Aref, A.R., Zarrabi, A. & Mostafavi, E. (2022). Exosomes as promising nanostructures in diabetes mellitus: from insulin sensitivity to ameliorating diabetic complications. Int J Nanomedicine, 1229-1253.
  • Balasubramanyam, M., Aravind, S., Gokulakrishnan, K., Prabu, P., Sathishkumar, C., Ranjani, H. & Mohan, V. (2011). Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Molecular and cellular biochemistry, 351, 197-205.
  • Baldeón, R.L., Weigelt, K., De Wit, H., Ozcan, B., van Oudenaren, A., Sempertegui, F., Sijbrands, E., Grosse, L., Freire, W. & Drexhage, H.A. (2014). Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One, 9(12), e115209.
  • Bazzoni, F., Rossato, M., Fabbri, M., Gaudiosi, D., Mirolo, M., Mori, L., Tamassia, N., Mantovani, A., Cassatella, M.A., & Locati, M. (2009). Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences, 106(13), 5282-5287.
  • Biessels, G. J. & Reagan, L. P. (2015). Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience, 16(11), 660-671.
  • Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615-1625.
  • Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A. & Butler, P.C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 52(1), 102-110.
  • Chatterjee, S., Khunti, K. & Davies, M.J. (2017). Type 2 diabetes. The lancet, 389(10085), 2239-2251.
  • Chen, W., Lou, J., Evans, E.A. & Zhu, C. (2012). Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. Journal of Cell Biology, 199(3), 497-512.
  • Collaboration, N.R.F. (2017). Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. International journal of epidemiology, 46(5), 1421-1432.
  • Finnegan, E. J. & Matzke, M. A. (2003). The small RNA world. Journal of cell science, 116(23), 4689-4693. Ganesh Yerra, V., Negi, G., Sharma, S. & Kumar, A. (2013). Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 1: 394- 397. In.
  • Genc, S., Yagci, T., Vageli, D. P., Dundar, R., Doukas, P. G., Doukas, S. G., Tolia, M., Chatzakis, N., Tsatsakis, A. & Taghizadehghalehjoughi, A. (2023). Exosomal MicroRNA-223, MicroRNA-146, and MicroRNA-21 Profiles and Biochemical Changes in Laryngeal Cancer. ACS Pharmacology & Translational Science, 6(5), 820-828.
  • Gilbert, R.E. & Cooper, M.E. (1999). The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney international, 56(5), 1627-1637.
  • Guo, H.-Y., Cheng, A.-C., Wang, M.-S., Yin, Z.-Q. & Jia, R.-Y. (2020). Exosomes: potential therapies for disease via regulating TLRs. Mediators of Inflammation, 2020.
  • Haligur, M., Topsakal, S. & Ozmen, O. (2012). Early degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: an immunohistochemical study. Journal of diabetes research, 2012.
  • Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G. & Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell, 119(7), 1041-1054.
  • Kaplan, A., Cetin, M., Orgul, D., Hacimufnewlu, A., & Hekimoglu, S. (2019). Formulation and In Vitro Evaluation of Topical Nanoemulsion based Gels Containing Daidzein. Journal of Drug Delivery Science and Technology, 19, 30263.
  • Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., Jacobs, S., Poppema, S. & Kroesen, B.-J. (2007). Regulation of primicroRNA BIC transcription and processing in Burkitt lymphoma. Oncogene, 26(26), 3769-3776.
  • Kodl, C. T., & Seaquist, E. R. (2008). Cognitive dysfunction and diabetes mellitus. Endocrine reviews, 29(4), 494-511.
  • Kong, L., Zhu, J., Han, W., Jiang, X., Xu, M., Zhao, Y., Dong, Q., Pang, Z., Guan, Q. & Gao, L. (2011).
  • Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta diabetologica, 48, 61-69.
  • L Isola, A. & Chen, S. (2017). Exosomes: the messengers of health and disease. Current neuropharmacology, 15(1), 157-165.
  • Li, Q., Zemel, E., Miller, B. & Perlman, I. (2002). Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Experimental eye research, 74(5), 615-625.
  • Lopes, M.B., Freitas, R.C., Hirata, M.H., Hirata, R.D., Rezende, A.A., Silbiger, V.N., Bortolin, R.H. & Luchessi, A.D. (2017). mRNA-miRNA integrative analysis of diabetes-induced cardiomyopathy in rats. Frontiers in Bioscience-Scholar, 9(2), 194-229.
  • Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47(2), 224-229.
  • Mijnhout, G., Scheltens, P., Diamant, M., Biessels, G., Wessels, A., Simsek, S., Snoek, F., & Heine, R. (2006). Diabetic encephalopathy: a concept in need of a definition. Diabetologia, 49, 1447-1448.
  • Muriach, M., Flores-Bellver, M., Romero, F.J. & Barcia, J.M. (2014). Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative medicine and cellular longevity, 2014.
  • Patel, S. & Santani, D. (2009). Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacological Reports, 61(4), 595-603.
  • Reed, M., Meszaros, K., Entes, L., Claypool, M., Pinkett, J., Gadbois, T. & Reaven, G. (2000). A new rat model of type 2 diabetes: the fat-fed, streptozotocintreated rat. Metabolism-Clinical and Experimental, 49(11), 1390-1394.
  • Sakshi, S., Jayasuriya, R., Ganesan, K., Xu, B. & Ramkumar, K. M. (2021). Role of circRNAmiRNA-mRNA interaction network in diabetes and its associated complications. Molecular TherapyNucleic Acids, 26, 1291-1302. Samanta, S., Rajasingh, S., Drosos, N., Zhou, Z., Dawn, B. & Rajasingh, J. (2018). Exosomes: new molecular targets of diseases. Acta Pharmacol Sin, 39(4), 501- 513.
  • Shawky, L.M., Morsi, A.A., El Bana, E. & Hanafy, S. M. (2019). The biological impacts of sitagliptin on the pancreas of a rat model of type 2 diabetes mellitus: Drug interactions with metformin. Biology, 9(1), 6.
  • Sıdıka, G., Cakir, Z., Taghizadehghalehjoughi, A., Yeşim, Y., Jalili, K. & HACIMÜFTÜOĞLU, A. (2021). Investigation of the Exosome-Based Drug Delivery System Potential in theTreatment of Glioblastoma in vitro Experimental Models. International Journal of Life Sciences and Biotechnology, 4(3), 451-467.
  • Szkudelski, T. (2012). Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental biology and medicine, 237(5), 481-490.
  • Taganov, K.D., Boldin, M.P., Chang, K.-J. & Baltimore, D. (2006). NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences, 103(33), 12481-12486.
  • Targher, G., & Byrne, C. D. (2017). Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nature Reviews Nephrology, 13(5), 297-310.
  • Wang-Fischer, Y., & Garyantes, T. (2018). Improving the reliability and utility of streptozotocin-induced rat diabetic model. Journal of diabetes research, 2018. Westermark, P., Wernstedt, C., Wilander, E., Hayden, D. W., O'Brien, T. D. & Johnson, K. H. (1987).
  • Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proceedings of the National Academy of Sciences, 84(11), 3881-3885.
  • Wong, C.H., Wanrooy, B.J. & Bruce, D.G. (2018). Neuroinflammation, type 2 diabetes, and dementia. In Type 2 Diabetes and Dementia (pp. 195-209). Elsevier.
  • Wu, K.K. & Huan, Y. (2008). Streptozotocin‐induced diabetic models in mice and rats. Current protocols in pharmacology, 40(1), 5.47. 41-45.47. 14.
  • Ye, J., Zhu, J., Chen, H., Qian, J., Zhang, L., Wan, Z., Chen, F., Sun, S., Li, W. & Luo, C. (2020). A novel lncRNA‐LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer, 146(1), 248-261.
  • Yeni, Y., Taghizadehghalehjoughi, A., Genc, S., Hacimuftuoglu, A., Yildirim, S. & Bolat, I. (2023). Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep, 50(5), 3999-4009.
  • Yeni, Y., Taghizadehghalehjoughi, A., Genc, S., Hacimuftuoglu, A., Yildirim, S. & Bolat, I. (2023). Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep, 50(5), 3999-4009.
  • Zhang, N., He, F., Li, T., Chen, J., Jiang, L., Ouyang, X.- P. & Zuo, L. (2021). Role of exosomes in brain diseases. Front Cell Neurosci, 15, 743353.
  • Zhao, Y., Krishnamurthy, B., UA Mollah, Z., WH Kay, T., & E Thomas, H. (2011). NF-κB in type 1 diabetes. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued), 10(3), 208-217.

Comparison of Brain and Pancreas Tissues Exosome derived -miRNA -9 and -146 levels in Healthy and Diabetes Rats

Yıl 2023, , 671 - 678, 31.12.2023
https://doi.org/10.35229/jaes.1358883

Öz

Small vesicles called exosomes have been found to regulate gene expression in tissues and play a role in the pathogenesis of many diseases. Therefore, this study aimed to determine the effects of exosomes on diabetes and related microRNA (miRNA) exchange. For this purpose, nicotinamide (120 mg/kg) was administered intraperitoneally (IP.), and Streptozotocin (50 mg/kg) ip was allocated 15 minutes later. Rats with 126 mg/dL and up glucose levels were accepted as Type 2 diabetes. At the end of 21 days, exosomes were obtained from the pancreas and brain tissues of rats (n:10) of diabetics and healthy groups. Then biochemical analyzes and oxidative stress parameters of both groups were examined. In addition, miRNA changes were discussed, and the results obtained were statistically evaluated. A significant increase was found in total oxidative status (TOS) and Lactate dehydrogenase (LDH) levels in both brain and pancreatic exosomes. It was observed that the total antioxidant level (TAC) decreased compared to the control group (P<0.05). As a result of the examination with Real-Time PCR, it was determined that the levels of miRNA -9 increased significantly in both brain tissue and pancreas tissue, and miR-146 gene levels were down-regulated considerably (P<0.05).
As a result, significant changes occurred in miRNA -9 and -146 levels in the brain and pancreatic tissue exosomes of diabetic rats. The results suggest that exosomes may have a role in miRNAs mediating neuroinflammation in the brain and pancreatic tissue.

Kaynakça

  • Ashrafizadeh, M., Kumar, A.P., Aref, A.R., Zarrabi, A. & Mostafavi, E. (2022). Exosomes as promising nanostructures in diabetes mellitus: from insulin sensitivity to ameliorating diabetic complications. Int J Nanomedicine, 1229-1253.
  • Balasubramanyam, M., Aravind, S., Gokulakrishnan, K., Prabu, P., Sathishkumar, C., Ranjani, H. & Mohan, V. (2011). Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Molecular and cellular biochemistry, 351, 197-205.
  • Baldeón, R.L., Weigelt, K., De Wit, H., Ozcan, B., van Oudenaren, A., Sempertegui, F., Sijbrands, E., Grosse, L., Freire, W. & Drexhage, H.A. (2014). Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One, 9(12), e115209.
  • Bazzoni, F., Rossato, M., Fabbri, M., Gaudiosi, D., Mirolo, M., Mori, L., Tamassia, N., Mantovani, A., Cassatella, M.A., & Locati, M. (2009). Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proceedings of the National Academy of Sciences, 106(13), 5282-5287.
  • Biessels, G. J. & Reagan, L. P. (2015). Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience, 16(11), 660-671.
  • Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615-1625.
  • Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A. & Butler, P.C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 52(1), 102-110.
  • Chatterjee, S., Khunti, K. & Davies, M.J. (2017). Type 2 diabetes. The lancet, 389(10085), 2239-2251.
  • Chen, W., Lou, J., Evans, E.A. & Zhu, C. (2012). Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. Journal of Cell Biology, 199(3), 497-512.
  • Collaboration, N.R.F. (2017). Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. International journal of epidemiology, 46(5), 1421-1432.
  • Finnegan, E. J. & Matzke, M. A. (2003). The small RNA world. Journal of cell science, 116(23), 4689-4693. Ganesh Yerra, V., Negi, G., Sharma, S. & Kumar, A. (2013). Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 1: 394- 397. In.
  • Genc, S., Yagci, T., Vageli, D. P., Dundar, R., Doukas, P. G., Doukas, S. G., Tolia, M., Chatzakis, N., Tsatsakis, A. & Taghizadehghalehjoughi, A. (2023). Exosomal MicroRNA-223, MicroRNA-146, and MicroRNA-21 Profiles and Biochemical Changes in Laryngeal Cancer. ACS Pharmacology & Translational Science, 6(5), 820-828.
  • Gilbert, R.E. & Cooper, M.E. (1999). The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney international, 56(5), 1627-1637.
  • Guo, H.-Y., Cheng, A.-C., Wang, M.-S., Yin, Z.-Q. & Jia, R.-Y. (2020). Exosomes: potential therapies for disease via regulating TLRs. Mediators of Inflammation, 2020.
  • Haligur, M., Topsakal, S. & Ozmen, O. (2012). Early degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: an immunohistochemical study. Journal of diabetes research, 2012.
  • Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G. & Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell, 119(7), 1041-1054.
  • Kaplan, A., Cetin, M., Orgul, D., Hacimufnewlu, A., & Hekimoglu, S. (2019). Formulation and In Vitro Evaluation of Topical Nanoemulsion based Gels Containing Daidzein. Journal of Drug Delivery Science and Technology, 19, 30263.
  • Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., Jacobs, S., Poppema, S. & Kroesen, B.-J. (2007). Regulation of primicroRNA BIC transcription and processing in Burkitt lymphoma. Oncogene, 26(26), 3769-3776.
  • Kodl, C. T., & Seaquist, E. R. (2008). Cognitive dysfunction and diabetes mellitus. Endocrine reviews, 29(4), 494-511.
  • Kong, L., Zhu, J., Han, W., Jiang, X., Xu, M., Zhao, Y., Dong, Q., Pang, Z., Guan, Q. & Gao, L. (2011).
  • Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta diabetologica, 48, 61-69.
  • L Isola, A. & Chen, S. (2017). Exosomes: the messengers of health and disease. Current neuropharmacology, 15(1), 157-165.
  • Li, Q., Zemel, E., Miller, B. & Perlman, I. (2002). Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Experimental eye research, 74(5), 615-625.
  • Lopes, M.B., Freitas, R.C., Hirata, M.H., Hirata, R.D., Rezende, A.A., Silbiger, V.N., Bortolin, R.H. & Luchessi, A.D. (2017). mRNA-miRNA integrative analysis of diabetes-induced cardiomyopathy in rats. Frontiers in Bioscience-Scholar, 9(2), 194-229.
  • Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47(2), 224-229.
  • Mijnhout, G., Scheltens, P., Diamant, M., Biessels, G., Wessels, A., Simsek, S., Snoek, F., & Heine, R. (2006). Diabetic encephalopathy: a concept in need of a definition. Diabetologia, 49, 1447-1448.
  • Muriach, M., Flores-Bellver, M., Romero, F.J. & Barcia, J.M. (2014). Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative medicine and cellular longevity, 2014.
  • Patel, S. & Santani, D. (2009). Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacological Reports, 61(4), 595-603.
  • Reed, M., Meszaros, K., Entes, L., Claypool, M., Pinkett, J., Gadbois, T. & Reaven, G. (2000). A new rat model of type 2 diabetes: the fat-fed, streptozotocintreated rat. Metabolism-Clinical and Experimental, 49(11), 1390-1394.
  • Sakshi, S., Jayasuriya, R., Ganesan, K., Xu, B. & Ramkumar, K. M. (2021). Role of circRNAmiRNA-mRNA interaction network in diabetes and its associated complications. Molecular TherapyNucleic Acids, 26, 1291-1302. Samanta, S., Rajasingh, S., Drosos, N., Zhou, Z., Dawn, B. & Rajasingh, J. (2018). Exosomes: new molecular targets of diseases. Acta Pharmacol Sin, 39(4), 501- 513.
  • Shawky, L.M., Morsi, A.A., El Bana, E. & Hanafy, S. M. (2019). The biological impacts of sitagliptin on the pancreas of a rat model of type 2 diabetes mellitus: Drug interactions with metformin. Biology, 9(1), 6.
  • Sıdıka, G., Cakir, Z., Taghizadehghalehjoughi, A., Yeşim, Y., Jalili, K. & HACIMÜFTÜOĞLU, A. (2021). Investigation of the Exosome-Based Drug Delivery System Potential in theTreatment of Glioblastoma in vitro Experimental Models. International Journal of Life Sciences and Biotechnology, 4(3), 451-467.
  • Szkudelski, T. (2012). Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental biology and medicine, 237(5), 481-490.
  • Taganov, K.D., Boldin, M.P., Chang, K.-J. & Baltimore, D. (2006). NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences, 103(33), 12481-12486.
  • Targher, G., & Byrne, C. D. (2017). Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nature Reviews Nephrology, 13(5), 297-310.
  • Wang-Fischer, Y., & Garyantes, T. (2018). Improving the reliability and utility of streptozotocin-induced rat diabetic model. Journal of diabetes research, 2018. Westermark, P., Wernstedt, C., Wilander, E., Hayden, D. W., O'Brien, T. D. & Johnson, K. H. (1987).
  • Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proceedings of the National Academy of Sciences, 84(11), 3881-3885.
  • Wong, C.H., Wanrooy, B.J. & Bruce, D.G. (2018). Neuroinflammation, type 2 diabetes, and dementia. In Type 2 Diabetes and Dementia (pp. 195-209). Elsevier.
  • Wu, K.K. & Huan, Y. (2008). Streptozotocin‐induced diabetic models in mice and rats. Current protocols in pharmacology, 40(1), 5.47. 41-45.47. 14.
  • Ye, J., Zhu, J., Chen, H., Qian, J., Zhang, L., Wan, Z., Chen, F., Sun, S., Li, W. & Luo, C. (2020). A novel lncRNA‐LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer, 146(1), 248-261.
  • Yeni, Y., Taghizadehghalehjoughi, A., Genc, S., Hacimuftuoglu, A., Yildirim, S. & Bolat, I. (2023). Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep, 50(5), 3999-4009.
  • Yeni, Y., Taghizadehghalehjoughi, A., Genc, S., Hacimuftuoglu, A., Yildirim, S. & Bolat, I. (2023). Glioblastoma cell-derived exosomes induce cell death and oxidative stress in primary cultures of olfactory neurons. Role of redox stress. Mol Biol Rep, 50(5), 3999-4009.
  • Zhang, N., He, F., Li, T., Chen, J., Jiang, L., Ouyang, X.- P. & Zuo, L. (2021). Role of exosomes in brain diseases. Front Cell Neurosci, 15, 743353.
  • Zhao, Y., Krishnamurthy, B., UA Mollah, Z., WH Kay, T., & E Thomas, H. (2011). NF-κB in type 1 diabetes. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued), 10(3), 208-217.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gen İfadesi, Hayvan Fizyolojisi - Sistemler
Bölüm Makaleler
Yazarlar

Sıdıka Genç 0000-0003-0000-5103

Ali Taghizadehghalehjoughi 0000-0002-3506-0324

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 12 Eylül 2023
Kabul Tarihi 7 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Genç, S., & Taghizadehghalehjoughi, A. (2023). Comparison of Brain and Pancreas Tissues Exosome derived -miRNA -9 and -146 levels in Healthy and Diabetes Rats. Journal of Anatolian Environmental and Animal Sciences, 8(4), 671-678. https://doi.org/10.35229/jaes.1358883


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS