İçme Suyundan Doğal Organik Madde Gideriminde Kitosan/Karbon Nanotüp Kaplı Ultrafiltrasyon Membranlarının Performansı
Yıl 2024,
, 257 - 268, 30.06.2024
İsmail Hakkı Zengin
,
Mehmet Çakmakcı
,
Fatma Busra Buyukbuberoglu
,
Doğan Karadağ
,
Cenk Denkdaş
,
Oğuzhan Avcıata
,
Afşin Çetinkaya
Öz
Bu çalışmanın amacı, doğal organik maddenin (NOM) giderilmesine ve membran kirlenmesinin
önlenmesine özel olarak odaklanarak, ticari olarak temin edilebilen polietersülfon (PES) ultrafiltrasyon (UF)
membranlarının filtrasyon verimliliğini arttırmaktır. UF membranlarının modifikasyonu, kitosan/çok duvarlı
karbon nanotüp (CS/MWCNT-OH) kullanılarak ve hem daldırma hem de döndürerek kaplama teknikleri
kullanılarak gerçekleştirildi. Membran yüzeyi morfolojileri, Zayıflatılmış Toplam Yansıma Fourier
Dönüşümü Kızılötesi Spektroskopisi (ATR-FTIR), Taramalı Elektron Mikroskobu (SEM), Atomik Kuvvet
Mikroskobu (AFM) ve Enerji Dağıtıcı X-ışını Spektroskopisi (EDX) teknikleri kullanılarak değerlendirildi.
Membranların etkinliğini değerlendirmek için laboratuvar ölçekli bir sistemde İstanbul'un iki ana su kaynağı,
özellikle Melen Nehri ve Terkos Gölü kullanılarak testler gerçekleştirildi. Toplam organik karbon (TOC),
UV254 absorbansı, bulanıklık ve trihalometan oluşum potansiyeli (THMFP) kapsamlı bir analizin parçası
olarak ölçüldü. Yüzey morfolojisi araştırmaları, MWCNT-OH nanopartiküllerinin membran yüzeyine etkili
bir şekilde çökeldiğini doğruladı. Bu, membranın hidrofilikliğinde bir iyileşme gösteren su temas açısındaki
azalma ile desteklendi. Modifiye edilmiş membranlar, orijinal membranlarla karşılaştırıldığında çok daha
yüksek TOC giderim oranları gösterdi. Spesifik olarak Melen Nehri ve Terkos Gölü'nün temizleme verimliliği
sırasıyla %37,14 ve %56,86 idi. Bununla birlikte, yüzeydeki değişiklik, gözenek boyutunda eş zamanlı
düşüşün bir sonucu olarak membran akışında bir düşüşe yol açtı. Özetlemek gerekirse, bu çalışmanın
sonuçları, ticari PES UF membranlarının performansını ve kirlenme önleyici özelliklerini geliştirmek için
CS/MWCNT-OH kullanılarak yüzey modifikasyonunun önemli kapasitesini vurgulamaktadır.
Kaynakça
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on
water treatment: A critical review. In Water
Research, 160. DOI:10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on
water treatment: A critical review. In Water
Research, 160. DOI:10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment.
Chemosphere, 234. DOI:
10.1016/j.chemosphere.2019.06.090
- Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G.,
Liu, K.Q., Tong, C.H., & Yu, Z.X. (2021).
Modification of regenerated cellulose
ultrafiltration membranes with multi-walled
carbon nanotubes for enhanced antifouling
ability: Field test and mechanism study. Science
of the Total Environment, 780. DOI:
10.1016/j.scitotenv.2021.146657
- Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z.,
Yang, W., & Graham, N. J. D. (2021).
Application of ultra-low concentrations of
moderately-hydrophobic chitosan for
ultrafiltration membrane fouling mitigation.
Journal of Membrane Science, 635. DOI:
10.1016/j.memsci.2021.119540
- Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim,
A. A. (2022). Fabrication of a Novel
(PVDF/MWCNT/Polypyrrole) Antifouling High
Flux Ultrafiltration Membrane for Crude Oil
Wastewater Treatment. Membranes, 12(8). DOI:
10.3390/membranes12080751
- Kallem, P., Ibrahim, Y., Hasan, S. W., Show, P. L., &
Banat, F. (2021). Fabrication of novel
polyethersulfone (PES) hybrid ultrafiltration
membranes with superior permeability and
antifouling properties using environmentally
friendly sulfonated functionalized polydopamine
nanofillers. Separation and Purification
Technology, 261. Doi:
10.1016/j.seppur.2021.118311
- Levchuk, I., Rueda Márquez, J.J. & Sillanpää, M. (2018). Removal of natural organic matter (NOM)
from water by ion Exchange - A review. In
Chemosphere, 192. DOI:
10.1016/j.chemosphere.2017.10.101
- Mallya, D.S., Abdikheibari, S., Dumée, L.F.,
Muthukumaran, S., Lei, W. & Baskaran, K.
(2023). Removal of natural organic matter from
surface water sources by nanofiltration and
surface engineering membranes for fouling
mitigation – A review. Chemosphere, 321. DOI:
10.1016/j.chemosphere.2023.138070
- Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba,
B.B. & Nkambule, T.T.I. (2018). Comparison of
natural organic matter removal by ultrafiltration,
granular activated carbon filtration and full scale
conventional water treatment. Journal of
Environmental Chemical Engineering, 6(5). DOI:
10.1016/j.jece.2018.10.002
- Masoumi, S., Miroliaei, A.R. & Jafarzadeh, Y. (2018).
Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in
water treatment. Advances in Environmental
Technology, 4(2). DOI:
10.22104/AET.2018.2965.1144
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on water treatment: A critical review. In Water
Research, 160. DOI:
10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers
layers for drinking water treatment.
Chemosphere, 234. DOI:
10.1016/j.chemosphere.2019.06.090
- Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G.,
Liu, K.Q., Tong, C.H. & Yu, Z.X. (2021).
Modification of regenerated cellulose
ultrafiltration membranes with multi-walled
carbon nanotubes for enhanced antifouling
ability: Field test and mechanism study. Science
of the Total Environment, 780. DOI:
10.1016/j.scitotenv.2021.146657
- Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z.,
Yang, W. & Graham, N.J.D. (2021).
Application of ultra-low concentrations of
moderately-hydrophobic chitosan for
ultrafiltration membrane fouling mitigation.
Journal of Membrane Science, 635. DOI:
10.1016/j.memsci.2021.119540
- Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim,
A. A. (2022). Fabrication of a Novel
(PVDF/MWCNT/Polypyrrole) Antifouling High
Flux Ultrafiltration Membrane for Crude Oil
Wastewater Treatment. Membranes, 12(8). DOI:
10.3390/membranes12080751
- Kallem, P., Ibrahim, Y., Hasan, S.W., Show, P.L. &
Banat, F. (2021). Fabrication of novel
polyethersulfone (PES) hybrid ultrafiltration
membranes with superior permeability and
antifouling properties using environmentally
friendly sulfonated functionalized polydopamine
nanofillers. Separation and Purification
Technology, 261. DOI:
10.1016/j.seppur.2021.118311
- Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M.
(2018). Removal of natural organic matter (NOM)
from water by ion exchange – A review. In
Chemosphere, 192. DOI:
10.1016/j.chemosphere.2017.10.101
- Mallya, D.S., Abdikheibari, S., Dumée, L.F.,
Muthukumaran, S., Lei, W. & Baskaran, K.
(2023). Removal of natural organic matter from
surface water sources by nanofiltration and
surface engineering membranes for fouling
mitigation – A review. Chemosphere, 321. DOI:
10.1016/j.chemosphere.2023.138070
- Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba,
B.B. & Nkambule, T.T.I. (2018). Comparison of
natural organic matter removal by ultrafiltration,
granular activated carbon filtration and full scale
conventional water treatment. Journal of
Environmental Chemical Engineering, 6(5). DOI:
10.1016/j.jece.2018.10.002
- Masoumi, S., Miroliaei, A. R., & Jafarzadeh, Y. (2018).
Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in
water treatment. Advances in Environmental
Technology, 4(2). DOI:
10.22104/AET.2018.2965.1144
- Mousavi, S.R., Asghari, M. & Mahmoodi, N. M. (2020).
Chitosan-wrapped multiwalled carbon nanotube
as filler within PEBA thin film nanocomposite
(TFN) membrane to improve dye removal.
Carbohydrate Polymers, 237. DOI:
10.1016/j.carbpol.2020.116128
- Pan, Y., Li, H., Zhang, X. & Li, A. (2016).
Characterization of natural organic matter in
drinking water: Sample preparation and analytical
approaches. In Trends in Environmental
Analytical Chemistry, 12. DOI:
10.1016/j.teac.2016.11.002
- Pérez-Lucas, G., Martínez-Menchón, M., Vela, N. &
Navarro, S. (2022). Removal assessment of
disinfection by-products (DBPs) from drinking
water supplies by solar heterogeneous
photocatalysis: A case study of trihalomethanes
(THMs). Journal of Environmental Management,
321. DOI: 10.1016/j.jenvman.2022.115936
- Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P.
(2021). Retention of natural organic matter by
ultrafiltration and the mitigation of membrane
fouling through pre-treatment, membrane
enhancement, and cleaning - A review. In Journal
of Water Process Engineering, 44. DOI:
10.1016/j.jwpe.2021.102374
- Ren, J., Xia, W., Feng, X. & Zhao, Y. (2022). Surface
modification of PVDF membrane by sulfonated
chitosan for enhanced anti-fouling property via
PDA coating layer. Materials Letters, 307. DOI:
10.1016/j.matlet.2021.130981
- Savi, P., Giorcelli, M. & Quaranta, S. (2019). Multiwalled carbon nanotubes composites for
microwave absorbing applications. Applied
Sciences (Switzerland), 9(5). DOI:
10.3390/app9050851
- Shao, B., Shen, L., Liu, Z., Tang, L., Tan, X., Wang, D.,
Zeng, W., Wu, T., Pan, Y., Zhang, X., Ge, L. &
He, M. (2023). Disinfection byproducts
formation from emerging organic micropollutants
during chlorine-based disinfection processes. In Chemical Engineering Journal, 455. DOI:
10.1016/j.cej.2022.140476
- Song, Q., Graham, N., Tang, Y., Siddique, M. S.,
Kimura, K. & Yu, W. (2022). The role of
medium molecular weight organics on reducing
disinfection by-products and fouling prevention in
nanofiltration. Water Research, 215. DOI:
10.1016/j.watres.2022.118263
- Susanto, H., Robbani, M.H., Istirokhatun, T.,
Firmansyah, A.A. & Rhamadhan, R. N. (2020).
Preparation of low-fouling polyethersulfone
ultrafiltration membranes by incorporating highmolecular-weight chitosan with the help of a
surfactant. South African Journal of Chemical
Engineering, 33. DOI:10.1016/j.sajce.2020.07.003
- Villanueva, C.M., Evlampidou, I., Ibrahim, F., DonatVargas, C., Valentin, A., Tugulea, A.M.,
Echigo, S., Jovanovic, D., Lebedev, A.T.,
Lemus-Pérez, M., Rodriguez-Susa, M., Luzati,
A., de Cássia dos Santos Nery, T., Pastén, P.A.,
Quiñones, M., Regli, S., Weisman, R., Dong, S.,
Ha, M., Phattarapattamawong, S. &
Kogevinas, M. (2023). Global assessment of
chemical quality of drinking water: The case of
trihalomethanes. Water Research, 230. DOI:
10.1016/j.watres.2023.119568
- Zhang, S., Yang, Y., Takizawa, S., & Hou, L. an. (2018).
Removal of dissolved organic matter and control
of membrane fouling by a hybrid ferrihydriteultrafiltration membrane system. Science of the
Total Environment, 631–632. DOI:
10.1016/j.scitotenv.2018.03.045
- Zhao, Z., Zheng, J., Wang, M., Zhang, H., & Han, C. C.
(2012). High performance ultrafiltration
membrane based on modified chitosan coating
and electrospun nanofibrous PVDF scaffolds.
Journal of Membrane Science, 394–395. DOI:
10.1016/j.memsci.2011.12.043.
Performance of Chitosan/Carbon Nanotube-Coated Ultrafiltration Membranes for Natural Organic Matter Removal from Drinking Water
Yıl 2024,
, 257 - 268, 30.06.2024
İsmail Hakkı Zengin
,
Mehmet Çakmakcı
,
Fatma Busra Buyukbuberoglu
,
Doğan Karadağ
,
Cenk Denkdaş
,
Oğuzhan Avcıata
,
Afşin Çetinkaya
Öz
The objective of this study is to improve the filtration efficiency of commercially available polyethersulfone (PES) ultrafiltration (UF) membranes, with a specific focus on removing natural organic
matter (NOM) and preventing membrane fouling. The modification of UF membranes was accomplished by utilizing chitosan/multi-walled carbon nanotubes (CS/MWCNT-OH) and employing both dip and spin
coating techniques. The membrane surface morphologies were evaluated using the Attenuated Total
Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM),
Atomic Force Microscopy (AFM), and Energy-Dispersive X-ray Spectroscopy (EDX) techniques. Tests were
carried out to assess the effectiveness of the membranes in a laboratory-scale system using two primary water sources from Istanbul, specifically the Melen River and Terkos Lake. Total organic carbon (TOC), UV254 absorbance, turbidity, and trihalomethane formation potential (THMFP) were all measured as part of a thorough analysis. The surface morphology investigations verified the effective deposition of MWCNT-OH nanoparticles onto the membrane surface. This was corroborated by the reduction in the water contact angle, showing an improvement in the hydrophilicity of the membrane. The modified membranes demonstrated much higher TOC removal rates compared to the original membranes. Specifically, the removal efficiencies for Melen River and Terkos Lake were 37.14% and 56.86%, respectively. Nevertheless, the alteration of the surface led to a decline in membrane flux as a result of the concurrent drop in pore size. To summarize, the results of this work highlights the considerable capability of surface modification using CS/MWCNT-OH to improve the performance and antifouling characteristics of commercial PES UF membranes.
Destekleyen Kurum
TUBITAK (THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKİYE)
Kaynakça
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on
water treatment: A critical review. In Water
Research, 160. DOI:10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on
water treatment: A critical review. In Water
Research, 160. DOI:10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment.
Chemosphere, 234. DOI:
10.1016/j.chemosphere.2019.06.090
- Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G.,
Liu, K.Q., Tong, C.H., & Yu, Z.X. (2021).
Modification of regenerated cellulose
ultrafiltration membranes with multi-walled
carbon nanotubes for enhanced antifouling
ability: Field test and mechanism study. Science
of the Total Environment, 780. DOI:
10.1016/j.scitotenv.2021.146657
- Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z.,
Yang, W., & Graham, N. J. D. (2021).
Application of ultra-low concentrations of
moderately-hydrophobic chitosan for
ultrafiltration membrane fouling mitigation.
Journal of Membrane Science, 635. DOI:
10.1016/j.memsci.2021.119540
- Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim,
A. A. (2022). Fabrication of a Novel
(PVDF/MWCNT/Polypyrrole) Antifouling High
Flux Ultrafiltration Membrane for Crude Oil
Wastewater Treatment. Membranes, 12(8). DOI:
10.3390/membranes12080751
- Kallem, P., Ibrahim, Y., Hasan, S. W., Show, P. L., &
Banat, F. (2021). Fabrication of novel
polyethersulfone (PES) hybrid ultrafiltration
membranes with superior permeability and
antifouling properties using environmentally
friendly sulfonated functionalized polydopamine
nanofillers. Separation and Purification
Technology, 261. Doi:
10.1016/j.seppur.2021.118311
- Levchuk, I., Rueda Márquez, J.J. & Sillanpää, M. (2018). Removal of natural organic matter (NOM)
from water by ion Exchange - A review. In
Chemosphere, 192. DOI:
10.1016/j.chemosphere.2017.10.101
- Mallya, D.S., Abdikheibari, S., Dumée, L.F.,
Muthukumaran, S., Lei, W. & Baskaran, K.
(2023). Removal of natural organic matter from
surface water sources by nanofiltration and
surface engineering membranes for fouling
mitigation – A review. Chemosphere, 321. DOI:
10.1016/j.chemosphere.2023.138070
- Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba,
B.B. & Nkambule, T.T.I. (2018). Comparison of
natural organic matter removal by ultrafiltration,
granular activated carbon filtration and full scale
conventional water treatment. Journal of
Environmental Chemical Engineering, 6(5). DOI:
10.1016/j.jece.2018.10.002
- Masoumi, S., Miroliaei, A.R. & Jafarzadeh, Y. (2018).
Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in
water treatment. Advances in Environmental
Technology, 4(2). DOI:
10.22104/AET.2018.2965.1144
- Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard,
J.P. & Criquet, J. (2019). Natural organic
matter-cations complexation and its impact on water treatment: A critical review. In Water
Research, 160. DOI:
10.1016/j.watres.2019.05.064
- Anis, S.F., Lalia, B.S., Hashaikeh, R. & Hilal, N. (2022).
Titanium coating on ultrafiltration inorganic
membranes for fouling control. Separation and
Purification Technology, 282. DOI:
10.1016/j.seppur.2021.119997
- Bin Darwish, N., Al Abdulgader, H., AlRomaih, H. &
Alalawi, A. (2019). Effect of ultrafiltration
membranes modifications by chitosan on humic
acid fouling. Journal of Water Process
Engineering, 27. DOI:
10.1016/j.jwpe.2018.11.008
- Cabral, J.P.S. (2010). Water microbiology. Bacterial
pathogens and water. In International Journal of
Environmental Research and Public Health,
7(10). DOI: 10.3390/ijerph7103657
- Cheng, X., Zhou, W., Li, P., Ren, Z., Wu, D., Luo, C.,
Tang, X., Wang, J. & Liang, H. (2019).
Improving ultrafiltration membrane performance
with pre-deposited carbon nanotubes/nanofibers
layers for drinking water treatment.
Chemosphere, 234. DOI:
10.1016/j.chemosphere.2019.06.090
- Han, J.C., Zhu, Y.K., Wang, L.F., Mu, Y., Feng, G.G.,
Liu, K.Q., Tong, C.H. & Yu, Z.X. (2021).
Modification of regenerated cellulose
ultrafiltration membranes with multi-walled
carbon nanotubes for enhanced antifouling
ability: Field test and mechanism study. Science
of the Total Environment, 780. DOI:
10.1016/j.scitotenv.2021.146657
- Hu, M., Zhao, L., Yu, N., Tian, Z., Yin, Z., Yang, Z.,
Yang, W. & Graham, N.J.D. (2021).
Application of ultra-low concentrations of
moderately-hydrophobic chitosan for
ultrafiltration membrane fouling mitigation.
Journal of Membrane Science, 635. DOI:
10.1016/j.memsci.2021.119540
- Hudaib, B., Abu-Zurayk, R., Waleed, H., & Ibrahim,
A. A. (2022). Fabrication of a Novel
(PVDF/MWCNT/Polypyrrole) Antifouling High
Flux Ultrafiltration Membrane for Crude Oil
Wastewater Treatment. Membranes, 12(8). DOI:
10.3390/membranes12080751
- Kallem, P., Ibrahim, Y., Hasan, S.W., Show, P.L. &
Banat, F. (2021). Fabrication of novel
polyethersulfone (PES) hybrid ultrafiltration
membranes with superior permeability and
antifouling properties using environmentally
friendly sulfonated functionalized polydopamine
nanofillers. Separation and Purification
Technology, 261. DOI:
10.1016/j.seppur.2021.118311
- Levchuk, I., Rueda Márquez, J. J., & Sillanpää, M.
(2018). Removal of natural organic matter (NOM)
from water by ion exchange – A review. In
Chemosphere, 192. DOI:
10.1016/j.chemosphere.2017.10.101
- Mallya, D.S., Abdikheibari, S., Dumée, L.F.,
Muthukumaran, S., Lei, W. & Baskaran, K.
(2023). Removal of natural organic matter from
surface water sources by nanofiltration and
surface engineering membranes for fouling
mitigation – A review. Chemosphere, 321. DOI:
10.1016/j.chemosphere.2023.138070
- Marais, S.S., Ncube, E.J., Msagati, T.A.M., Mamba,
B.B. & Nkambule, T.T.I. (2018). Comparison of
natural organic matter removal by ultrafiltration,
granular activated carbon filtration and full scale
conventional water treatment. Journal of
Environmental Chemical Engineering, 6(5). DOI:
10.1016/j.jece.2018.10.002
- Masoumi, S., Miroliaei, A. R., & Jafarzadeh, Y. (2018).
Preparation and characterization of MWCNTCOOH/PVC ultrafiltration membranes to use in
water treatment. Advances in Environmental
Technology, 4(2). DOI:
10.22104/AET.2018.2965.1144
- Mousavi, S.R., Asghari, M. & Mahmoodi, N. M. (2020).
Chitosan-wrapped multiwalled carbon nanotube
as filler within PEBA thin film nanocomposite
(TFN) membrane to improve dye removal.
Carbohydrate Polymers, 237. DOI:
10.1016/j.carbpol.2020.116128
- Pan, Y., Li, H., Zhang, X. & Li, A. (2016).
Characterization of natural organic matter in
drinking water: Sample preparation and analytical
approaches. In Trends in Environmental
Analytical Chemistry, 12. DOI:
10.1016/j.teac.2016.11.002
- Pérez-Lucas, G., Martínez-Menchón, M., Vela, N. &
Navarro, S. (2022). Removal assessment of
disinfection by-products (DBPs) from drinking
water supplies by solar heterogeneous
photocatalysis: A case study of trihalomethanes
(THMs). Journal of Environmental Management,
321. DOI: 10.1016/j.jenvman.2022.115936
- Peters, C.D., Rantissi, T., Gitis, V. & Hankins, N.P.
(2021). Retention of natural organic matter by
ultrafiltration and the mitigation of membrane
fouling through pre-treatment, membrane
enhancement, and cleaning - A review. In Journal
of Water Process Engineering, 44. DOI:
10.1016/j.jwpe.2021.102374
- Ren, J., Xia, W., Feng, X. & Zhao, Y. (2022). Surface
modification of PVDF membrane by sulfonated
chitosan for enhanced anti-fouling property via
PDA coating layer. Materials Letters, 307. DOI:
10.1016/j.matlet.2021.130981
- Savi, P., Giorcelli, M. & Quaranta, S. (2019). Multiwalled carbon nanotubes composites for
microwave absorbing applications. Applied
Sciences (Switzerland), 9(5). DOI:
10.3390/app9050851
- Shao, B., Shen, L., Liu, Z., Tang, L., Tan, X., Wang, D.,
Zeng, W., Wu, T., Pan, Y., Zhang, X., Ge, L. &
He, M. (2023). Disinfection byproducts
formation from emerging organic micropollutants
during chlorine-based disinfection processes. In Chemical Engineering Journal, 455. DOI:
10.1016/j.cej.2022.140476
- Song, Q., Graham, N., Tang, Y., Siddique, M. S.,
Kimura, K. & Yu, W. (2022). The role of
medium molecular weight organics on reducing
disinfection by-products and fouling prevention in
nanofiltration. Water Research, 215. DOI:
10.1016/j.watres.2022.118263
- Susanto, H., Robbani, M.H., Istirokhatun, T.,
Firmansyah, A.A. & Rhamadhan, R. N. (2020).
Preparation of low-fouling polyethersulfone
ultrafiltration membranes by incorporating highmolecular-weight chitosan with the help of a
surfactant. South African Journal of Chemical
Engineering, 33. DOI:10.1016/j.sajce.2020.07.003
- Villanueva, C.M., Evlampidou, I., Ibrahim, F., DonatVargas, C., Valentin, A., Tugulea, A.M.,
Echigo, S., Jovanovic, D., Lebedev, A.T.,
Lemus-Pérez, M., Rodriguez-Susa, M., Luzati,
A., de Cássia dos Santos Nery, T., Pastén, P.A.,
Quiñones, M., Regli, S., Weisman, R., Dong, S.,
Ha, M., Phattarapattamawong, S. &
Kogevinas, M. (2023). Global assessment of
chemical quality of drinking water: The case of
trihalomethanes. Water Research, 230. DOI:
10.1016/j.watres.2023.119568
- Zhang, S., Yang, Y., Takizawa, S., & Hou, L. an. (2018).
Removal of dissolved organic matter and control
of membrane fouling by a hybrid ferrihydriteultrafiltration membrane system. Science of the
Total Environment, 631–632. DOI:
10.1016/j.scitotenv.2018.03.045
- Zhao, Z., Zheng, J., Wang, M., Zhang, H., & Han, C. C.
(2012). High performance ultrafiltration
membrane based on modified chitosan coating
and electrospun nanofibrous PVDF scaffolds.
Journal of Membrane Science, 394–395. DOI:
10.1016/j.memsci.2011.12.043.