Balık, bitki ve zemin materyalinin aynı ortamda kullanıldığı akvaryum sistemlerinde balıkların metabolik atıkları ve tüketilmeyen yemden kaynaklanan nütrientlerin ortamdan uzaklaştırılarak, bitki besini olarak kullanımı hedeflenen bu araştırmada, Vallisneria sp. bitkisinin büyüme parametreleri üzerine zeolit, leonardit ve diyatomit materyalinin kullanım özelliklerinin belirlenmesi amaçlanmıştır.
Araştırma üç aşamada 8 ay süreyle yürütülmüştür. Birinci adımında bitki adaptasyon aşaması olarak planlanmış ve ortama balık eklenmemiştir. İkinci adımda ortama balık eklenmiştir. Üçüncü adımda ise adsorban karmasının bitki besini depolama kapasitesinin (etkili kullanım süresinin) belirlenebilmesi için planlanmıştır. Araştırma akvaryumunda, tüm aşamalarda balık yemi dışında herhangi bir bitki besini veya gübresi kullanılmamıştır. Deneme, balık yemlerinden kaynaklanan ve bitkilerin besin olarak kullandığı nutrient maddelerin leonardit ve zeolite karmasında depolanmasının akvaryum koşullarında Vallisneria sp. bitkisinin büyümesindeki etkileri ve etki süresi üç aşamalı olarak incelenmiştir. Deneme grupları, birinci gruba %40 protein değerine sahip yemin adsorban karması (G1), ikinci gruba %33 protein değerine sahip yemin adsorban karması (G2) ve üçüncü gruba (G3) ise yemsiz olan adsorban karması eklenerek oluşturulmuştur.
Deneme başı ve sonundaki SGR değerleri karşılaştırıldığında %40 ve %33 protein içeren G1 ve G2 grupları arasında istatistiki bir fark görülmezken (P>0.05), her iki grubun (G1, G2) control grubuna (G3) kıyasla istitistiki anlamda (P<0.05) daha iyi büyüme gösterdiği belirlenmiştir. Bu çalışmada, doğal adsorban karmasının yaklaşık olarak 8 ay süreyle Vallisneria bitkisinin büyümesine destek olduğu ve belirli aralıklar ile yeniden nütrientlerce zenginleştirilmiş adsorban karması ilavesinin gerekli olduğu belirlenmiştir.
Adiloğlu, A., Bellitürk, K., Adiloğlu, S. & Solmaz, Y.
(2018). The effect of increasing leonardit
applications on dry matter yield and some nutrient
elements contents of rye (Secalecerale L.) plant.
Eurasian Journal of Forest Science, 6(1), 44-51.
Barone, V., Bertoldo, G., Magro, F., Broccanello, C.,
Puglisi, I., Baglieri, A., Cagnin, M., Concheri,
G., Squartini, A., Pizzeghello, D., Nardi, S. &
Stevanato, P. (2019). Molecular and
morphological changes induced by leonarditebased biostimulant in Beta vulgaris L. Plants, 8,
181. DOI: 10.3390/plants8060181
Dong, B., Qin, B.Q., Gong, Z.J. & Wang, Y.P. (2011).
Effects of sediment amendment on Vallisneria
natans growth. Chinese Journal of Ecology,
30(12), 2726-2731.
Emirzeoğlu, S. (2020). Akvaryum bitkilerinden Bacopa
sp.’nin büyümesi üzerine farklı substratların
etkisi. Master Thesis Ordu Üniversitesi Fen
Bilimleri Enstitüsü. 68p (in Turkish).
Ersoy, O., Rençberoğlu, M., Karapınar Güler, D. &
Özkay, Ö.F. (2022). A novel flux that determines
the physico-chemical properties of calcined
diatomite in its industrial use as a filler and filter
aid: Thenardite (Na2SO4). Crystals, 12, 503.
DOI: 10.3390/cryst12040503
Gardner, J.L. & Al-Hamdani, S. (1997). Interactive
effects of aluminum and humic substances on
Salvinia. Journal of Aquatic Plant Management,
35, 30-34.
Gosselin, J.R., Haller, W.T., Gettys, L.A., Griffin, T. &
Crawford, E.S. (2018). Effects of substrate
nutrients on growth of three submersed aquatic
plants. J. Aquat. Plant Manage., 56, 39-46.
Gue, J., Xu, Z., Jin, H., Ning, X., He, H., Yu, J.,
Jeppesen, E. & Li, K. (2016). Response of
Vallisneria natans to increasing nitrogen loading
depends on sediment nutrient characteristics.
Water, 8, 563. DOI: 10.3390/w8120563
Hua, K. & Bureau, D.P. (2006). Modelling digestible
phosphorus content of salmonid fish feeds.
Aquaculture, 254(1-4), 455-465
Huang, D., Xiao, R., Du, L., Zhang, G., Yin, L., Deng,
R. & Wang, G. (2021). Phytoremediation of
poly- and perfluoroalkyl substances: A review on
aquatic plants, influencing factors, and
phytotoxicity. Journal of Hazardous Materials,
418, 126314. DOI:
10.1016/j.jhazmat.2021.126314
Kalita, B., Bora, S.S. & Gogoi, B. (2020). Zeolite: A soil
conditione. International Journal of Current
Microbiology and Applied Sciences, 9(1), DOI:
10.20546/ijcmas.2020.901.133
Kibria, G., Nugegoda, D., Fairclough, R. & Lam, P.
(1997). The nutrient content and the release of
nutrients from fish food and faeces.
Hydrobiologia, 357, 165-171
Li, Z.Q., Konga, L.Y., Yanga, L.F., Zhangc, M., Caoc,
T., Xuc, J., Wanga, Z.X. & Lei, Y. (2012). Effect
of substrate grain size on the growth and
morphology of the submersed macrophyte
Vallisneria natans L. Limnologica, 42, 81-85.
DOI: 10.1016/j.limno.2011.09.003
Loh, J.Y., How, C.W., Hii, Y.S., Khoo, G. & Ong,
H.K.A. (2009). Fish faeces as a potential food
source for cultivating the water flea, Moina
macrocopa. Journal of Science and Technology in
the Tropics, 5, 5-10.
Moreno, J.L., Irene, T. & Felipe, B. (2017). Compost,
leonardite, and zeolite impacts on soil microbial
community under barley crops. J. of Soil Sci. and
Plant. Nutr., 17(1), 214-230. DOI:
10.4067/S0718-95162017005000017
Munguti, J.M., Kirimi, J.G., Obiero, K.O., Ogello,
E.O., Kyule, D.N., Liti, D.M. & Musalia, L.M.
(2021). Aqua-feed wastes: Impact on natural
systems and practical mitigations-A review. J. of
Agricultural Sci. 13(1). DOI:
10.5539/jas.v13n1p111
Nagy, G. (2019). Submerged aquatic plant (Vallisneria
spiralis and Egeria densa) utilisation as a biogas
cleaner and feedstock of co-digestion.
International Journal of Engineering and
Management Sciences (IJEMS), 4(4).
https://doi.org/10.21791/IJEMS.2019.4.19
Nizam, N.U.M., Marlia Mohd Hanafiah, M.M., Noor,
I.M. & Abd Karim, H.I. (2020). Efficiency of
five selected aquatic plants in phytoremediation of
aquaculture wastewater. Appl. Sci., 10, 2712.
https://doi.org/10.3390/app10082712
Olego, M.A., Lasso, M.C., Miguel Javier Quiroga, M.J.,
Visconti, F., López, R. & Garzón-Jimeno, E.
(2022). Effects of leonardite amendments on
vineyard calcareous soil fertility, vine nutrition
and grape quality. Plants, 11, 356. DOI:
10.3390/plants11030356
Öz, M., Şahin, D., Yılmaz, E. & Öz, Ü. (2022). The
potential applicability of natural minerals as filter
media for modulating water quality in aquatic
ecosystems. App. Ecol. and Environ. Res. 20(5),
4145-4155. DOI: 10.15666/aeer/2005_41454155
Priya, A., Kumar, A., Nayak, S.K. & Mogalekar, H.S.
(2022). Importance of aquatic plants in fish
breeding. Vigyan Varta, 3(8), 110-113.
Rafiee, Gh.R. & Saad, Ch.R. (2008). Roles of natural
zeolite (clinoptiolite) as a bed medium on growth
and body composition of red tilapia (Oreochromis
sp.) and lettuce (Lactuca sativa var longifolia)
seedlings in a pisciponic system. Iranian Journal
of Fisheries Sciences, 7(2), 47-58.
Ratanaprommanee, C., Chinachanta, K., Chaiwan, F.
& Shutsrirung, A. (2016). Chemical
characterization of leonardite and its potential use
as soil conditioner and plant growth enhancement.
Asia-Pacific Journal of Science and Technology,
22(4).
Reka, A.A., Pavlovski, B., Boev, B., Bogoevski, S.,
Boškovski, B., Lazarova, M., Lamamra, A.,
Jashari, A., Jovanovski, G. & Makreski, P.
(2021). Diatomite - evaluation of physicomechanical, chemical, mineralogical and thermal
properties. Geologica Macedonica, 35(1), 5-14
Sava, S.C., Pogurschi, E., Bahaciu, G.V., Dragomir, N.
& Nicolae, C.G. (2019). The effects of
clinoptilolite from feed upon fish rearing and
water quality. Current Trends in Natural
Sciences, 8(16), 212-219.
Sayehi, M., Delahay, G. & Tounsi, H. (2022). Synthesis
and characterization of ecofriendly materials
zeolite from waste glass and aluminum scraps
using the hydrothermal technique. Journal of
Environmental Chemical Engineering, 10(6),
108561. DOI: 10.1016/j.jece.2022.108561
Shelar, G.S., Dhaker, H.D., Pathan, D.I. &
Shirdhankar, M.M. (2012). Effect of different
organic manures on growth of screw Vallisneria,
Vallisneria spiralis Linne 1753. African Journal
of Basic & Applied Sciences, 4(4), 128-133. DOI:
10.5829/idosi.ajbas.2012.4.4.1113
Sirakov, K., Velichkova, S., Stoyanova, D. & Staykov,
Y. (2015). Application of natural zeolites and
macrophytes for water treatment in recirculation
aquaculture systems. Bulgarian Journal of
Agricultural Science, 21(1), 147-153.
Szatanik-Kloc, A., Szerement, J., Adamczuk, A. &
Józefaciuk, G. (2021). Effect of low zeolite doses
on plants and soil physicochemical properties.
Materials, 14, 2617. DOI: 10.3390/ma14102617
Şahin, D. (2022). Comparative evaluation of natural water
conditioners for their potential use in freshwater
aquaculture. Environmental Science and
Pollution Research, 29, 47233–4724. DOI:
10.1007/s11356-022-19265-0
Tanaya, F.Y., Kisworo. & Prihatmo, G. (2021).
Combination of zeolite, charcoal and water
spinach as integrated filters to reduce ammonia
level in aquaponic system. Sciscitatio, 2(1), 7-15.
DOI: 10.21460/sciscitatio.2021.21
Tang, H., Dai, Y., Fan, Y., Song, X., Wang, F. & Liang,
W. (2021). Effect of Vallisneria spiralis on water
quality and sediment nitrogen at different growth
stages in eutrophic shallow lake mesocosms. Pol.
J. Environ. Stud., 30(3), 2341-2351. DOI:
10.15244/pjoes/127418
Tekoğul, H., Turan, G., Sayğı, H., Cirik, S., Koru, E.,
Karacalar, U. & Seyhaneyıldız, Ş. (2017).
Vallisneria spiralis (Linneaus 1753)’in değişik
besin ortamlarında yetiştiricilik çalışmaları. Türk
Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(3),
256-260.
Tootoonchi, M., Gettys, L.A., Thayer, K.L., Markovich,
I.J., Sigmon, J.W. & Sadeghibaniani, S. (2020).
Ecotypes of aquatic plant Vallisneria americana
tolerate different salinity concentrations.
Diversity, 12, 65. DOI: 10.3390/d12020065
Ünver, A.Ç. (2019). Akvaryum bitkisi Sagittaria
subulata’nın farklı besin ortamlarında büyüme ve
gelişmesinin araştırılması. Master Thesis,
Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü.
65p (in Turkish).
Wang, R., Liu, Y., Luo, F., Bai, G., Tang, Y., Fang, Q.,
Zhu, J., Li, B., Liu, Z., He, F., Zhou, Q., Wu, Z.
& Zhang, Y. (2023). Synergistic effect of
vermiculite and submerged plants on lake
sediments. Water Biology and Security. DOI:
10.1016/j.watbs.2023.100181
Xie, Y., Deng, W. & Wang, J. (2007). Growth and root
distribution of Vallisneria natans in
heterogeneous sediment environments. Aquatic
Botany, 86, 9-13.
Yan, H., Yan, Z., Wang, L., Hao, Z. & Huang, J. (2022).
Toward understanding submersed macrophyte
Vallisneria natans-microbe partnerships to
improve remediation potential for PAHcontaminated sediment. Journal of Hazardous
Materials, 425, 127767. DOI:
10.1016/j.jhazmat.2021.127767
Yeşiltaş, M., Koçer, M.A.T., Sevgili, H. & Koru, E.
(2021). Effect of different inorganic substrates on
growth performance of African catfish (Clarias
gariepinus, Burchell 1822) and Lettuce (Lactuca
sativa L.). Turkish Journal of Agriculture -Food
Science and Technology, 9(4), 714-722. DOI:
/10.24925/turjaf.v9i4.714-722.402
Yolcu, H., Seker, H., Gullap, M.K., Lithourgidis, A. &
Gunes, A. (2011). Application of cattle manure,
zeolite and leonardite improves hay yield and
quality of annual ryegrass (Lolium multiflorum
Lam.) under semiarid conditions. AJCS, 5(8),
926-931 ISSN:1835-2707.
Zengin, G. (2013). Effective removal of zinc from an
aqueous solution using Turkish leonardite–
clinoptilolite mixture as a sorbent. Environmental
Earth Science, 70, 3031-3041. DOI:
10.1007/s12665-013-2364-5
Zhang, B., Wang, X., Songmin Li, S, Liu, Y, An ,Y. &
Zheng, X. (2019a). Preferable adsorption of
nitrogen and phosphorus from agricultural
wastewater using thermally modified zeolite–
diatomite composite adsorbent. Water, 11, 2053.
DOI: 10.3390/w11102053
Zhang, L., Zhang, Y. & Liu, L. (2019b). Effect of
submerged macrophytes Vallisneria spiralis L. on
restoring the sediment contaminated by
enrofloxacin in aquaculture ponds. Ecological
Engineering, 140, 1055. DOI:
10.1016/j.ecoleng.2019.105596.
Determining the Usage Properties of Some Natural Substrate Materials in submerged macrophyte Vallisneria sp. culture
In this research, which targets removing nutrients resulting from the metabolic wastes of fish and unconsumed feed from the environment in aquarium systems where fish, plants, and ground material are used in the same environment and use them as plant nutrients, it was aimed to determine the usage properties of zeolite, leonardite and diatomite materials on the growth parameters of the Vallisneria sp. plant.
The study was conducted in three stages for 8 months. The first step of the study was planned as the plant adaptation phase, and no fish were added to the environment. In the second step, fish was introduced. The third step was designed to determine the adsorbent mixture's plant nutrient storage capacity (effective usage period). In the experimental aquariums, no plant nutrient or fertiliser other than fish food was used at all stages. The effects and using duration on the growth of the Vallisneria sp plant of adsorbed nutrients from unconsumed feed by leonardite and zeolite mixture were investigated in three stages in aquarium condition. Trial groups were formed by adding the adsorbent mixture of the feed having a 40% protein value to the first group (G1), the adsorbent mixture of the feed having a 33% protein value to the second group (G2), and the adsorbent mixture without feed to the third group (G3).
When the SGR values at the end of the experiment were compared, there was no statistical difference between the G1 and G2 groups, which contained 40% and 33% protein (P>0.05). On the other hand, both groups (G1, G2) showed significantly higher (P<0.05) growth compared to the control group (G3). In this study, it was determined that the natural adsorbent mixture supported the growth of the Vallisneria plant for approximately 8 months and that adding adsorbent mixture enriched with nutrients is necessary at certain intervals.
Adiloğlu, A., Bellitürk, K., Adiloğlu, S. & Solmaz, Y.
(2018). The effect of increasing leonardit
applications on dry matter yield and some nutrient
elements contents of rye (Secalecerale L.) plant.
Eurasian Journal of Forest Science, 6(1), 44-51.
Barone, V., Bertoldo, G., Magro, F., Broccanello, C.,
Puglisi, I., Baglieri, A., Cagnin, M., Concheri,
G., Squartini, A., Pizzeghello, D., Nardi, S. &
Stevanato, P. (2019). Molecular and
morphological changes induced by leonarditebased biostimulant in Beta vulgaris L. Plants, 8,
181. DOI: 10.3390/plants8060181
Dong, B., Qin, B.Q., Gong, Z.J. & Wang, Y.P. (2011).
Effects of sediment amendment on Vallisneria
natans growth. Chinese Journal of Ecology,
30(12), 2726-2731.
Emirzeoğlu, S. (2020). Akvaryum bitkilerinden Bacopa
sp.’nin büyümesi üzerine farklı substratların
etkisi. Master Thesis Ordu Üniversitesi Fen
Bilimleri Enstitüsü. 68p (in Turkish).
Ersoy, O., Rençberoğlu, M., Karapınar Güler, D. &
Özkay, Ö.F. (2022). A novel flux that determines
the physico-chemical properties of calcined
diatomite in its industrial use as a filler and filter
aid: Thenardite (Na2SO4). Crystals, 12, 503.
DOI: 10.3390/cryst12040503
Gardner, J.L. & Al-Hamdani, S. (1997). Interactive
effects of aluminum and humic substances on
Salvinia. Journal of Aquatic Plant Management,
35, 30-34.
Gosselin, J.R., Haller, W.T., Gettys, L.A., Griffin, T. &
Crawford, E.S. (2018). Effects of substrate
nutrients on growth of three submersed aquatic
plants. J. Aquat. Plant Manage., 56, 39-46.
Gue, J., Xu, Z., Jin, H., Ning, X., He, H., Yu, J.,
Jeppesen, E. & Li, K. (2016). Response of
Vallisneria natans to increasing nitrogen loading
depends on sediment nutrient characteristics.
Water, 8, 563. DOI: 10.3390/w8120563
Hua, K. & Bureau, D.P. (2006). Modelling digestible
phosphorus content of salmonid fish feeds.
Aquaculture, 254(1-4), 455-465
Huang, D., Xiao, R., Du, L., Zhang, G., Yin, L., Deng,
R. & Wang, G. (2021). Phytoremediation of
poly- and perfluoroalkyl substances: A review on
aquatic plants, influencing factors, and
phytotoxicity. Journal of Hazardous Materials,
418, 126314. DOI:
10.1016/j.jhazmat.2021.126314
Kalita, B., Bora, S.S. & Gogoi, B. (2020). Zeolite: A soil
conditione. International Journal of Current
Microbiology and Applied Sciences, 9(1), DOI:
10.20546/ijcmas.2020.901.133
Kibria, G., Nugegoda, D., Fairclough, R. & Lam, P.
(1997). The nutrient content and the release of
nutrients from fish food and faeces.
Hydrobiologia, 357, 165-171
Li, Z.Q., Konga, L.Y., Yanga, L.F., Zhangc, M., Caoc,
T., Xuc, J., Wanga, Z.X. & Lei, Y. (2012). Effect
of substrate grain size on the growth and
morphology of the submersed macrophyte
Vallisneria natans L. Limnologica, 42, 81-85.
DOI: 10.1016/j.limno.2011.09.003
Loh, J.Y., How, C.W., Hii, Y.S., Khoo, G. & Ong,
H.K.A. (2009). Fish faeces as a potential food
source for cultivating the water flea, Moina
macrocopa. Journal of Science and Technology in
the Tropics, 5, 5-10.
Moreno, J.L., Irene, T. & Felipe, B. (2017). Compost,
leonardite, and zeolite impacts on soil microbial
community under barley crops. J. of Soil Sci. and
Plant. Nutr., 17(1), 214-230. DOI:
10.4067/S0718-95162017005000017
Munguti, J.M., Kirimi, J.G., Obiero, K.O., Ogello,
E.O., Kyule, D.N., Liti, D.M. & Musalia, L.M.
(2021). Aqua-feed wastes: Impact on natural
systems and practical mitigations-A review. J. of
Agricultural Sci. 13(1). DOI:
10.5539/jas.v13n1p111
Nagy, G. (2019). Submerged aquatic plant (Vallisneria
spiralis and Egeria densa) utilisation as a biogas
cleaner and feedstock of co-digestion.
International Journal of Engineering and
Management Sciences (IJEMS), 4(4).
https://doi.org/10.21791/IJEMS.2019.4.19
Nizam, N.U.M., Marlia Mohd Hanafiah, M.M., Noor,
I.M. & Abd Karim, H.I. (2020). Efficiency of
five selected aquatic plants in phytoremediation of
aquaculture wastewater. Appl. Sci., 10, 2712.
https://doi.org/10.3390/app10082712
Olego, M.A., Lasso, M.C., Miguel Javier Quiroga, M.J.,
Visconti, F., López, R. & Garzón-Jimeno, E.
(2022). Effects of leonardite amendments on
vineyard calcareous soil fertility, vine nutrition
and grape quality. Plants, 11, 356. DOI:
10.3390/plants11030356
Öz, M., Şahin, D., Yılmaz, E. & Öz, Ü. (2022). The
potential applicability of natural minerals as filter
media for modulating water quality in aquatic
ecosystems. App. Ecol. and Environ. Res. 20(5),
4145-4155. DOI: 10.15666/aeer/2005_41454155
Priya, A., Kumar, A., Nayak, S.K. & Mogalekar, H.S.
(2022). Importance of aquatic plants in fish
breeding. Vigyan Varta, 3(8), 110-113.
Rafiee, Gh.R. & Saad, Ch.R. (2008). Roles of natural
zeolite (clinoptiolite) as a bed medium on growth
and body composition of red tilapia (Oreochromis
sp.) and lettuce (Lactuca sativa var longifolia)
seedlings in a pisciponic system. Iranian Journal
of Fisheries Sciences, 7(2), 47-58.
Ratanaprommanee, C., Chinachanta, K., Chaiwan, F.
& Shutsrirung, A. (2016). Chemical
characterization of leonardite and its potential use
as soil conditioner and plant growth enhancement.
Asia-Pacific Journal of Science and Technology,
22(4).
Reka, A.A., Pavlovski, B., Boev, B., Bogoevski, S.,
Boškovski, B., Lazarova, M., Lamamra, A.,
Jashari, A., Jovanovski, G. & Makreski, P.
(2021). Diatomite - evaluation of physicomechanical, chemical, mineralogical and thermal
properties. Geologica Macedonica, 35(1), 5-14
Sava, S.C., Pogurschi, E., Bahaciu, G.V., Dragomir, N.
& Nicolae, C.G. (2019). The effects of
clinoptilolite from feed upon fish rearing and
water quality. Current Trends in Natural
Sciences, 8(16), 212-219.
Sayehi, M., Delahay, G. & Tounsi, H. (2022). Synthesis
and characterization of ecofriendly materials
zeolite from waste glass and aluminum scraps
using the hydrothermal technique. Journal of
Environmental Chemical Engineering, 10(6),
108561. DOI: 10.1016/j.jece.2022.108561
Shelar, G.S., Dhaker, H.D., Pathan, D.I. &
Shirdhankar, M.M. (2012). Effect of different
organic manures on growth of screw Vallisneria,
Vallisneria spiralis Linne 1753. African Journal
of Basic & Applied Sciences, 4(4), 128-133. DOI:
10.5829/idosi.ajbas.2012.4.4.1113
Sirakov, K., Velichkova, S., Stoyanova, D. & Staykov,
Y. (2015). Application of natural zeolites and
macrophytes for water treatment in recirculation
aquaculture systems. Bulgarian Journal of
Agricultural Science, 21(1), 147-153.
Szatanik-Kloc, A., Szerement, J., Adamczuk, A. &
Józefaciuk, G. (2021). Effect of low zeolite doses
on plants and soil physicochemical properties.
Materials, 14, 2617. DOI: 10.3390/ma14102617
Şahin, D. (2022). Comparative evaluation of natural water
conditioners for their potential use in freshwater
aquaculture. Environmental Science and
Pollution Research, 29, 47233–4724. DOI:
10.1007/s11356-022-19265-0
Tanaya, F.Y., Kisworo. & Prihatmo, G. (2021).
Combination of zeolite, charcoal and water
spinach as integrated filters to reduce ammonia
level in aquaponic system. Sciscitatio, 2(1), 7-15.
DOI: 10.21460/sciscitatio.2021.21
Tang, H., Dai, Y., Fan, Y., Song, X., Wang, F. & Liang,
W. (2021). Effect of Vallisneria spiralis on water
quality and sediment nitrogen at different growth
stages in eutrophic shallow lake mesocosms. Pol.
J. Environ. Stud., 30(3), 2341-2351. DOI:
10.15244/pjoes/127418
Tekoğul, H., Turan, G., Sayğı, H., Cirik, S., Koru, E.,
Karacalar, U. & Seyhaneyıldız, Ş. (2017).
Vallisneria spiralis (Linneaus 1753)’in değişik
besin ortamlarında yetiştiricilik çalışmaları. Türk
Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(3),
256-260.
Tootoonchi, M., Gettys, L.A., Thayer, K.L., Markovich,
I.J., Sigmon, J.W. & Sadeghibaniani, S. (2020).
Ecotypes of aquatic plant Vallisneria americana
tolerate different salinity concentrations.
Diversity, 12, 65. DOI: 10.3390/d12020065
Ünver, A.Ç. (2019). Akvaryum bitkisi Sagittaria
subulata’nın farklı besin ortamlarında büyüme ve
gelişmesinin araştırılması. Master Thesis,
Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü.
65p (in Turkish).
Wang, R., Liu, Y., Luo, F., Bai, G., Tang, Y., Fang, Q.,
Zhu, J., Li, B., Liu, Z., He, F., Zhou, Q., Wu, Z.
& Zhang, Y. (2023). Synergistic effect of
vermiculite and submerged plants on lake
sediments. Water Biology and Security. DOI:
10.1016/j.watbs.2023.100181
Xie, Y., Deng, W. & Wang, J. (2007). Growth and root
distribution of Vallisneria natans in
heterogeneous sediment environments. Aquatic
Botany, 86, 9-13.
Yan, H., Yan, Z., Wang, L., Hao, Z. & Huang, J. (2022).
Toward understanding submersed macrophyte
Vallisneria natans-microbe partnerships to
improve remediation potential for PAHcontaminated sediment. Journal of Hazardous
Materials, 425, 127767. DOI:
10.1016/j.jhazmat.2021.127767
Yeşiltaş, M., Koçer, M.A.T., Sevgili, H. & Koru, E.
(2021). Effect of different inorganic substrates on
growth performance of African catfish (Clarias
gariepinus, Burchell 1822) and Lettuce (Lactuca
sativa L.). Turkish Journal of Agriculture -Food
Science and Technology, 9(4), 714-722. DOI:
/10.24925/turjaf.v9i4.714-722.402
Yolcu, H., Seker, H., Gullap, M.K., Lithourgidis, A. &
Gunes, A. (2011). Application of cattle manure,
zeolite and leonardite improves hay yield and
quality of annual ryegrass (Lolium multiflorum
Lam.) under semiarid conditions. AJCS, 5(8),
926-931 ISSN:1835-2707.
Zengin, G. (2013). Effective removal of zinc from an
aqueous solution using Turkish leonardite–
clinoptilolite mixture as a sorbent. Environmental
Earth Science, 70, 3031-3041. DOI:
10.1007/s12665-013-2364-5
Zhang, B., Wang, X., Songmin Li, S, Liu, Y, An ,Y. &
Zheng, X. (2019a). Preferable adsorption of
nitrogen and phosphorus from agricultural
wastewater using thermally modified zeolite–
diatomite composite adsorbent. Water, 11, 2053.
DOI: 10.3390/w11102053
Zhang, L., Zhang, Y. & Liu, L. (2019b). Effect of
submerged macrophytes Vallisneria spiralis L. on
restoring the sediment contaminated by
enrofloxacin in aquaculture ponds. Ecological
Engineering, 140, 1055. DOI:
10.1016/j.ecoleng.2019.105596.
Öz, M. (2024). Determining the Usage Properties of Some Natural Substrate Materials in submerged macrophyte Vallisneria sp. culture. Journal of Anatolian Environmental and Animal Sciences, 9(1), 137-144. https://doi.org/10.35229/jaes.1448066
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS