Araştırma Makalesi
BibTex RIS Kaynak Göster

Jeotermal Enerji Santrali Acil Durum Göletinde Yaşam: Jeotermal Havuzlarda Arthrospira Platensis'in Stresli Yüksek Sıcaklığa Karşı İzolasyonu ve Kültürü

Yıl 2024, , 299 - 306, 30.09.2024
https://doi.org/10.35229/jaes.1468898

Öz

Jeotermal sular yerin derinliklerinde yüksek basınç ve sıcaklıktan dolayı zengin mineraller içeren ve yeryüzüne ilk kez ulaşan sulardır. Bu nedenle, gelecekte mikroalg türlerinin, jeotermal acil durum havuzlarında büyük ölçekli yetiştiriciliği ve jeotermal akışkanların teknoloji optimizasyonu kullanımı açısından elde edilen sonuçlara odaklanacaktır.
Jeotermal atıl sudan izole edilen Arthrospira platensis'in farklı besin ortamlarında büyüme performansı araştırıldı. Optik yoğunluk ve kültürdeki hücre sayısı alglerin büyümesinin ana göstergeleridir. Zarrouk ortamı bu tür alglerde hem optik yoğunluk hem de hücre sayısı açısından diğer besin ortamlarına göre daha etkili olduğu gözlenmiştir. A. platensis kültüründe en yüksek hücre sayısı Zarrouk besin ortamında 35,43 x104 hücre mL-1 olarak ölçülmüştür. Bu tür kültür hücre sayıları Spirulina ortamında, kontrol grubunda ve BG11'de sırasıyla 23,75 x104, 6,25 x104 ve 6,25 x104 hücre mL-1 olarak tespit edildi. Bu ortamların alglerin fotosentezi ve hücre büyümesi için gerekli besinleri daha iyi sağladığı düşünülebilir. Özellikle suyun toplam sertliği 21,4±1,04 ppm’den 1,5±0,14 ppm'ye, sülfat miktarı 44±0,49 ppm’den 0 ppm’ye, alkalinitesi 3213±43,5 ppm’den 716±58,9 ppm’ye ve demir içeriği 20,3±2,23 ppm'den 4,1±0,15 ppm'ye düşmüştür. Bu çalışmada Maspo Enerji jeotermal santralinin acil durum havuzu suyunda A. platensis türlerinin üretimi nedeniyle maksimum %43 civarında protein içeren türlerin üretimi gerçekleştirilmiştir.

Kaynakça

  • Arguelles, E.D.L.R. (2019a). Systematic study of some epiphytic algae (non-diatoms) on the submerged parts of water hyacinth [Eichhornia Crassipes (Mart.) Solms-Loubach] found in Laguna de Bay, Philippines. Tropical Life Sciences Research 30(1), 1-21. DOI: 10.21315/tlsr2019.30.1.1
  • Arguelles, E.D.L.R. (2019b). Descriptive study of some epiphytic algae growing on Hydrilla verticillata (L.F) Royle (Hydrocharitaceae) found in The Shallow Fresh- Water Lake, Laguna De Bay (Philippines). Egyptian Journal of Aquatic Biology and Fisheries 23(2), 15-28. DOI: 10.21608/EJABF.2019.29300
  • Arguelles, E.D.L.R. (2020). Microalgae of Pineapple [Ananas Comosus (L.) Merr] Phytotelmata from Ca-Lauan, Laguna (Philippines). Philippine Journal of Science 149(3), 589-602. DOI: 10.56899/149.03.12
  • Arguelles, E.D.L.R. (2021a). Unseen microalgal diversity phytotelmata in Neoregelia Spp. L.B. Smith (Bromeliaceae) from Florists Wholesalers in Laguna, Philippines. Philippine Journal of Science 150(1), 123-137. DOI: 10.56899/150.01.10
  • Arguelles, E.D.L.R. (2021b). Phytotelm algae of Pandan [Pandanus Amaryllifolius Roxb.] (Pandanaceae) leaf Axil Tanks From Laguna (Philippines). Tropical Natural History 21(1), 167–183.
  • Becker, E.W. (1994). Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press, 230p.
  • Bojadgieva, K., Hristov, H., Hristov, V. & Benderev, A. (2000). Status of Geothermal Energy in Bulgaria. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan.
  • Borowitzka, M.A. & Borowitzka, L.J. (1988). Microalgal biotechnology, Cambridge University Press, Cambridge, 477p. DOI: 10.1002/jctb.280470214
  • Bradshaw, A.D. & Hardwick, K. (1989). Evolution and stess-genotypic and phenotypic components. Bio- Logical Journal of The Linnean Society, 37, 137- 155. DOI: 10.1111/j.1095-8312.1989.tb02099.x
  • Brouard, O., Le Jeune, A.H., Leroy, C., Cereghi, N.R., Roux, O., Pelozuelo, L., Dejean, A., Corbara, B. & Carrias, J.F. (2011). Are algae relevant to the detritus‐based food web in tank‐bromeliads? Plos One 6(5), E20129. DOI: 10.1371/journal.pone.0020129
  • Campbell, C.J. (1997). The Coming Oil Crisis. Multi- Science Publishing Company and Petro Consultants: Essex, England.
  • Chen, H. & Pan, S. (2002). Bioremediation potential of Spirulina: Toxicity and biosorption studies of lead. Journal of Zhejiang University Science B, 6B(3), 171-174. DOI: 10.1631/jzus.2005.b0171
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. DOI: 10.1016/j.biotechadv.2007.02.001
  • Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126-131. DOI: 10.1016/j.tibtech.2007.12.002
  • Cohen, Z., Vonshak, A. & Richmond, A. (1987). Fatty- acid composition of Spirulina strains grown under various environmental-conditions. Phytochemistry, 26(8), 2255-2258. DOI: 10.1016/S0031-9422(00)84694-4
  • Colla, L.M., Reinehr, C.O., Reichert, C. & Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493. DOI: 10.1016/j.biortech.2005.09.030
  • Cox, E.J. (1996). Identification of freshwater Diatoms from live material. London: Chapman & Hall. 158p. DOI: 10.1017/S0025315400041023
  • Guiry, M.D. (2018). AlgaeBase. In: Guiry M.D. & Guiry, G.M. (Ed), World-wide electronic publication, National University of Ireland, Galway. DOI: http://www.algaebase.org; searched on 02 January 2018.
  • Heidenreich, B.E. (2008). Adaptive mutation in Saccharomyces cerevisiae. Critical Reviews in Biochemistry and Molecular Biology, 42(4), 285- 311. DOI: 10.1080/10409230701507773
  • Hosseini, S.M., Khosravi-Darani, K. & Mozafari, M.R. (2013). Nutritional and medical applications of Spirulina microalgae. Mini-Reviews in Medicinal Chemistry, 13(8), 1231-1237. DOI: 10.2174/1389557511313080009
  • Huber-Pestalozzi, G. (1983). Das Phytoplankton des Süßwassers Systematik und Biology, 7.Teil, 1. Hälfte, Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. In: J. Komarek, B. Fott, E. (Ed), Schweizerbart'sche Verlagsbuchhandlung (Nagele u. Obermiller), 1043 p. Mit 253 Tafeln, 14 Abbidungen und 43 Tabellen in Text, Stuttgart.
  • John, D.M. & Tsarenko, P.M. (2002). Order Chlorococcales. In: John, D.M., Whitton, B.A. & Brook, J.A., (Eds), The freshwater algal flora of the British Isles: an identification guide to reshwater and terrestrial algae. 327-409p.
  • Cambridge University Press, Cambridge. Karydaki, G., Arvanitis, A., Andritsos, N. & Fytikas, M. (2005). Low enthalpy geothermal fields in the Strymon Basin (Northern Greece). Proceedings World Geothermal Congress 2005, Antalya, Turkey.
  • Kramer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunoticeae. Unter Mitarbeit von H. Hakanson und M. Nörpel, Gustav Fischer Verlag, 577 p, Stuttgart.
  • Kramer, K. & Lange-Bertalot, H. (1999). Bacillariophyceae. 1.Teil: Naviculaceae. Durchgesehener Nachdruck der 1. Auflage. Spektrum Akadmischer VerlagHeidelberg, 876 p, Berlin.
  • Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41, 101566. DOI: 10.1016/j.algal.2019.101566
  • Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28, 2661- 2670. DOI: 10.1007/s11274-012-1076-4
  • Morais, M.G. & Costa, J.A.V. (2008). Bioprocesses for removing carbon dioxide and nitrogen oxide microalgae order to use gases generated during the combustion of coal. Bioprocessos para remoção de dióxido de carbono e óxido de nitrogênio por microalgas visando a utilização de gases gerados durante a combustão do carvão. Química Nova, 31, 1038-1042. DOI: 10.1590/S0100-40422008000500017
  • Pandey, J.P., Pathak, N. & Tiwari, A. (2010). Standardization of pH and light intensity for the biomass production of Spirulina platensis. Journal of Algal Biomass Utilization, 1(2), 93- 102. Poniewozik, M., Duangjan, K., Pekkoh, J. & Wołowski, K. (2020). Algae of bromeliad Phytotelmata in The Queen Sirikit Botanical Garden, Chiang Mai, Thailand. Phytotaxa 432(1), 17-37. DOI: 10.11646/phytotaxa.432.1.3
  • Ramos G.J.P. & Moura, C.W.N. (2019). Algae and cyanobacteria in phytotelmata: diversity, ecological aspects, and conservation. Biodiversity and Conservation 28(7), 1667-1697. DOI: 10.1007/S10531-019-01771-2
  • Ramos, G.J.P., Santana, L.M., Medina, A.M., Bicudo, C., Branco, L.H.Z. & Moura, C.W.N. (2018).
  • Unraveling algae and cyanobacteria biodiversity in Bromeliad Phytotelmata in different vegetation for- mations in Bahia State, Northeastern Brazil. Acta Botanica Brasilica 32(4), 567-577. DOI: 10.1590/0102‐33062018abb0070
  • Rastegary, J., Shirazi, S.A., Fernandez, T. & Ghassemi, A. (2013). Water Resources for Algae-Based Biofuels. Journal of Contemporary Water Research & Education, 151, 1-122. DOI: 10.1111/j.1936-704X.2013.03157.x
  • Refaay, D.A., El-Marzoki, E.M., Abdel-Hamid, M.I. & Haroun, S.A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology, 33, 3807-3815. DOI: 10.1007/s10811-021-02584-z
  • Reynolds, C.S. (1984). The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384p. DOI: 10.1017/CBO9780511542145
  • Righelato, R. & Spracklen, D.V. (2007). Carbon Mitigation by biofuels or by saving and restoring Forests? Science, 317, 902. DOI: 10.1126/science.1141361
  • Sukatar, A. (2002). Algal culture methods, (in Turkish). Ege Üniversitesi Fen Fakültesi Kitapları Serisi No:184. 104s.
  • Tomaselli, L., Giovannetti, L., Sacchi, A. & Bocci, F. (1988). Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Stadler, T., Mellion, J., Verdus, M.C., Karamanos, Y., Morvan, H. & Christiaen D. (Ed), Algal Biotechnology, Elsevier Applied Science, London. 303-314p.
  • Velasquez, G.T. (1962). The blue green-algae of the Philippines. Philippine Journal of Science, 91(3), 267-380.
  • Wan, D., Wu, Q. & Kuča, K. (2016). Spirulina. In R. C. Gupta (Ed.), Nutraceuticals: Efficacy, safety and toxicity, Academic Press, 569-583p. DOI: 10.1016/C2014-0-01870-9
  • Wehr, J. & Sheath, R.G. (2003). Freshwater Algae of North America: Ecology and classification, Academic Press, 917p. DOI: 10.1016/C2010-0- 66664-8
  • Zafaralla, M.T. (1998). Microalgae of Taal Lake. Bi- Cutan, Taguig, Metro Manila. National Academy of Science and Technology. 66p.

Living in Geothermal Energy Plant Emergency Pond: Isolation and Cultivation of Arthrospira platensis to Stressful High Temperature in the Geothermal Ponds

Yıl 2024, , 299 - 306, 30.09.2024
https://doi.org/10.35229/jaes.1468898

Öz

Jeotermal sular yerin derinliklerinde yüksek basınç ve sıcaklıktan dolayı zengin mineraller içeren ve yeryüzüne ilk kez ulaşan sulardır. Bu nedenle, gelecekte mikroalg türlerinin, jeotermal acil durum havuzlarında büyük ölçekli yetiştiriciliği ve jeotermal akışkanların teknoloji optimizasyonu kullanımı açısından elde edilen sonuçlara odaklanacaktır.
Jeotermal atıl sudan izole edilen Arthrospira platensis'in farklı besin ortamlarında büyüme performansı araştırıldı. Optik yoğunluk ve kültürdeki hücre sayısı alglerin büyümesinin ana göstergeleridir. Zarrouk ortamı bu tür alglerde hem optik yoğunluk hem de hücre sayısı açısından diğer besin ortamlarına göre daha etkili olduğu gözlenmiştir. A. platensis kültüründe en yüksek hücre sayısı Zarrouk besin ortamında 35,43 x104 hücre mL-1 olarak ölçülmüştür. Bu tür kültür hücre sayıları Spirulina ortamında, kontrol grubunda ve BG11'de sırasıyla 23,75 x104, 6,25 x104 ve 6,25 x104 hücre mL-1 olarak tespit edildi. Bu ortamların alglerin fotosentezi ve hücre büyümesi için gerekli besinleri daha iyi sağladığı düşünülebilir. Özellikle suyun toplam sertliği 21,4±1,04 ppm’den 1,5±0,14 ppm'ye, sülfat miktarı 44±0,49 ppm’den 0 ppm’ye, alkalinitesi 3213±43,5 ppm’den 716±58,9 ppm’ye ve demir içeriği 20,3±2,23 ppm'den 4,1±0,15 ppm'ye düşmüştür. Bu çalışmada Maspo Enerji jeotermal santralinin acil durum havuzu suyunda A. platensis türlerinin üretimi nedeniyle maksimum %43 civarında protein içeren türlerin üretimi gerçekleştirilmiştir.
Anahtar kelimeler: Arthrospira platensis, Kültür, Jeotermal enerji santrali, Jeortermal acil durum havuz suyu,

Kaynakça

  • Arguelles, E.D.L.R. (2019a). Systematic study of some epiphytic algae (non-diatoms) on the submerged parts of water hyacinth [Eichhornia Crassipes (Mart.) Solms-Loubach] found in Laguna de Bay, Philippines. Tropical Life Sciences Research 30(1), 1-21. DOI: 10.21315/tlsr2019.30.1.1
  • Arguelles, E.D.L.R. (2019b). Descriptive study of some epiphytic algae growing on Hydrilla verticillata (L.F) Royle (Hydrocharitaceae) found in The Shallow Fresh- Water Lake, Laguna De Bay (Philippines). Egyptian Journal of Aquatic Biology and Fisheries 23(2), 15-28. DOI: 10.21608/EJABF.2019.29300
  • Arguelles, E.D.L.R. (2020). Microalgae of Pineapple [Ananas Comosus (L.) Merr] Phytotelmata from Ca-Lauan, Laguna (Philippines). Philippine Journal of Science 149(3), 589-602. DOI: 10.56899/149.03.12
  • Arguelles, E.D.L.R. (2021a). Unseen microalgal diversity phytotelmata in Neoregelia Spp. L.B. Smith (Bromeliaceae) from Florists Wholesalers in Laguna, Philippines. Philippine Journal of Science 150(1), 123-137. DOI: 10.56899/150.01.10
  • Arguelles, E.D.L.R. (2021b). Phytotelm algae of Pandan [Pandanus Amaryllifolius Roxb.] (Pandanaceae) leaf Axil Tanks From Laguna (Philippines). Tropical Natural History 21(1), 167–183.
  • Becker, E.W. (1994). Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press, 230p.
  • Bojadgieva, K., Hristov, H., Hristov, V. & Benderev, A. (2000). Status of Geothermal Energy in Bulgaria. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan.
  • Borowitzka, M.A. & Borowitzka, L.J. (1988). Microalgal biotechnology, Cambridge University Press, Cambridge, 477p. DOI: 10.1002/jctb.280470214
  • Bradshaw, A.D. & Hardwick, K. (1989). Evolution and stess-genotypic and phenotypic components. Bio- Logical Journal of The Linnean Society, 37, 137- 155. DOI: 10.1111/j.1095-8312.1989.tb02099.x
  • Brouard, O., Le Jeune, A.H., Leroy, C., Cereghi, N.R., Roux, O., Pelozuelo, L., Dejean, A., Corbara, B. & Carrias, J.F. (2011). Are algae relevant to the detritus‐based food web in tank‐bromeliads? Plos One 6(5), E20129. DOI: 10.1371/journal.pone.0020129
  • Campbell, C.J. (1997). The Coming Oil Crisis. Multi- Science Publishing Company and Petro Consultants: Essex, England.
  • Chen, H. & Pan, S. (2002). Bioremediation potential of Spirulina: Toxicity and biosorption studies of lead. Journal of Zhejiang University Science B, 6B(3), 171-174. DOI: 10.1631/jzus.2005.b0171
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. DOI: 10.1016/j.biotechadv.2007.02.001
  • Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126-131. DOI: 10.1016/j.tibtech.2007.12.002
  • Cohen, Z., Vonshak, A. & Richmond, A. (1987). Fatty- acid composition of Spirulina strains grown under various environmental-conditions. Phytochemistry, 26(8), 2255-2258. DOI: 10.1016/S0031-9422(00)84694-4
  • Colla, L.M., Reinehr, C.O., Reichert, C. & Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493. DOI: 10.1016/j.biortech.2005.09.030
  • Cox, E.J. (1996). Identification of freshwater Diatoms from live material. London: Chapman & Hall. 158p. DOI: 10.1017/S0025315400041023
  • Guiry, M.D. (2018). AlgaeBase. In: Guiry M.D. & Guiry, G.M. (Ed), World-wide electronic publication, National University of Ireland, Galway. DOI: http://www.algaebase.org; searched on 02 January 2018.
  • Heidenreich, B.E. (2008). Adaptive mutation in Saccharomyces cerevisiae. Critical Reviews in Biochemistry and Molecular Biology, 42(4), 285- 311. DOI: 10.1080/10409230701507773
  • Hosseini, S.M., Khosravi-Darani, K. & Mozafari, M.R. (2013). Nutritional and medical applications of Spirulina microalgae. Mini-Reviews in Medicinal Chemistry, 13(8), 1231-1237. DOI: 10.2174/1389557511313080009
  • Huber-Pestalozzi, G. (1983). Das Phytoplankton des Süßwassers Systematik und Biology, 7.Teil, 1. Hälfte, Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. In: J. Komarek, B. Fott, E. (Ed), Schweizerbart'sche Verlagsbuchhandlung (Nagele u. Obermiller), 1043 p. Mit 253 Tafeln, 14 Abbidungen und 43 Tabellen in Text, Stuttgart.
  • John, D.M. & Tsarenko, P.M. (2002). Order Chlorococcales. In: John, D.M., Whitton, B.A. & Brook, J.A., (Eds), The freshwater algal flora of the British Isles: an identification guide to reshwater and terrestrial algae. 327-409p.
  • Cambridge University Press, Cambridge. Karydaki, G., Arvanitis, A., Andritsos, N. & Fytikas, M. (2005). Low enthalpy geothermal fields in the Strymon Basin (Northern Greece). Proceedings World Geothermal Congress 2005, Antalya, Turkey.
  • Kramer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunoticeae. Unter Mitarbeit von H. Hakanson und M. Nörpel, Gustav Fischer Verlag, 577 p, Stuttgart.
  • Kramer, K. & Lange-Bertalot, H. (1999). Bacillariophyceae. 1.Teil: Naviculaceae. Durchgesehener Nachdruck der 1. Auflage. Spektrum Akadmischer VerlagHeidelberg, 876 p, Berlin.
  • Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41, 101566. DOI: 10.1016/j.algal.2019.101566
  • Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28, 2661- 2670. DOI: 10.1007/s11274-012-1076-4
  • Morais, M.G. & Costa, J.A.V. (2008). Bioprocesses for removing carbon dioxide and nitrogen oxide microalgae order to use gases generated during the combustion of coal. Bioprocessos para remoção de dióxido de carbono e óxido de nitrogênio por microalgas visando a utilização de gases gerados durante a combustão do carvão. Química Nova, 31, 1038-1042. DOI: 10.1590/S0100-40422008000500017
  • Pandey, J.P., Pathak, N. & Tiwari, A. (2010). Standardization of pH and light intensity for the biomass production of Spirulina platensis. Journal of Algal Biomass Utilization, 1(2), 93- 102. Poniewozik, M., Duangjan, K., Pekkoh, J. & Wołowski, K. (2020). Algae of bromeliad Phytotelmata in The Queen Sirikit Botanical Garden, Chiang Mai, Thailand. Phytotaxa 432(1), 17-37. DOI: 10.11646/phytotaxa.432.1.3
  • Ramos G.J.P. & Moura, C.W.N. (2019). Algae and cyanobacteria in phytotelmata: diversity, ecological aspects, and conservation. Biodiversity and Conservation 28(7), 1667-1697. DOI: 10.1007/S10531-019-01771-2
  • Ramos, G.J.P., Santana, L.M., Medina, A.M., Bicudo, C., Branco, L.H.Z. & Moura, C.W.N. (2018).
  • Unraveling algae and cyanobacteria biodiversity in Bromeliad Phytotelmata in different vegetation for- mations in Bahia State, Northeastern Brazil. Acta Botanica Brasilica 32(4), 567-577. DOI: 10.1590/0102‐33062018abb0070
  • Rastegary, J., Shirazi, S.A., Fernandez, T. & Ghassemi, A. (2013). Water Resources for Algae-Based Biofuels. Journal of Contemporary Water Research & Education, 151, 1-122. DOI: 10.1111/j.1936-704X.2013.03157.x
  • Refaay, D.A., El-Marzoki, E.M., Abdel-Hamid, M.I. & Haroun, S.A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology, 33, 3807-3815. DOI: 10.1007/s10811-021-02584-z
  • Reynolds, C.S. (1984). The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384p. DOI: 10.1017/CBO9780511542145
  • Righelato, R. & Spracklen, D.V. (2007). Carbon Mitigation by biofuels or by saving and restoring Forests? Science, 317, 902. DOI: 10.1126/science.1141361
  • Sukatar, A. (2002). Algal culture methods, (in Turkish). Ege Üniversitesi Fen Fakültesi Kitapları Serisi No:184. 104s.
  • Tomaselli, L., Giovannetti, L., Sacchi, A. & Bocci, F. (1988). Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Stadler, T., Mellion, J., Verdus, M.C., Karamanos, Y., Morvan, H. & Christiaen D. (Ed), Algal Biotechnology, Elsevier Applied Science, London. 303-314p.
  • Velasquez, G.T. (1962). The blue green-algae of the Philippines. Philippine Journal of Science, 91(3), 267-380.
  • Wan, D., Wu, Q. & Kuča, K. (2016). Spirulina. In R. C. Gupta (Ed.), Nutraceuticals: Efficacy, safety and toxicity, Academic Press, 569-583p. DOI: 10.1016/C2014-0-01870-9
  • Wehr, J. & Sheath, R.G. (2003). Freshwater Algae of North America: Ecology and classification, Academic Press, 917p. DOI: 10.1016/C2010-0- 66664-8
  • Zafaralla, M.T. (1998). Microalgae of Taal Lake. Bi- Cutan, Taguig, Metro Manila. National Academy of Science and Technology. 66p.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekoloji (Diğer), Biyolojik Oşinografi
Bölüm Makaleler
Yazarlar

Betül Girgin 0009-0002-4874-6840

Kadir Balcı 0000-0003-1088-7453

Murat Solmaz 0009-0005-1731-932X

Yaşar Durmaz 0000-0002-1858-5882

Erken Görünüm Tarihi 16 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 16 Nisan 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Girgin, B., Balcı, K., Solmaz, M., Durmaz, Y. (2024). Living in Geothermal Energy Plant Emergency Pond: Isolation and Cultivation of Arthrospira platensis to Stressful High Temperature in the Geothermal Ponds. Journal of Anatolian Environmental and Animal Sciences, 9(3), 299-306. https://doi.org/10.35229/jaes.1468898


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS