Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Different Drying Methods on Biochemical Composition of Chlorella vulgaris, Microcystis aeruginosa and Haematococcus pluvialis

Yıl 2025, Cilt: 10 Sayı: 4, 457 - 463, 31.07.2025
https://doi.org/10.35229/jaes.1657943

Öz

A critical stage in the processing of microalgal biomass, drying has a big impact on the biochemical composition of the material. This study assesses how Chlorella vulgaris, Microcystis aeruginosa, and Haematococcus pluvialis' protein, lipid, and carbohydrate content are affected by drying using oven, lyophilizer and microwave. Because of its low rate of heat degradation, the findings show that lyophilization maintains the highest protein (30–55%) and lipid (10–35%) content among all species. However, because of the breakdown of other macromolecules, oven-drying and microwave-drying raise the relative carbohydrate content by up to 35%. It was seen that the highest antioxidant activity was determined from M. aeruginosa. Similar to biochemical composition exhibit a tendency whereby freeze-dry maintains the highest levels, oven-drying causes moderate losses, and microwave-drying causes considerable deterioration. This is probably because antioxidant chemicals are sensitive to heat and are easily oxidized and degraded in hot environments. These results demonstrate that while oven-drying and microwave-drying may be more suited for applications needing biomass rich in carbohydrates, including the generation of biofuel, freeze-drying is the recommended technique for maintaining high-value biochemical components. Choosing the right drying technique is crucial for maximizing the use of biomass in a range of industrial applications.

Kaynakça

  • Agbede, O.O., Oke, E.O., Akinfenwa, S.I., Wahab, K.T., Ogundipe, S., Aworanti, O.A., Arinkoola, A.O., Agarry, S.E., Ogunleye, O.O., & Osuolale, F.N. (2020). Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling. Bioresource Technology Reports, 11, 100467. DOI: 10.1016/j.biteb.2020.100467
  • Aljabri, H., Cherif, M., Siddiqui, S.A., Bounnit, T., & Saadaoui, I. (2023). Evidence of the drying technique’s impact on the biomass quality of Tetraselmis subcordiformis (Chlorophyceae). Biotechnology for Biofuels and Bioproducts, 16(1), 85. DOI: 10.1186/s13068-023-02335-x
  • Amin, M., Chetpattananondh, P., Cheng, C.K., Sami, S.K., & Khan, M.N. (2021). Drying characteristics and impacts on quality of marine Chlorella sp. biomass and extracts for fuel applications. Journal of Environmental Chemical Engineering, 9(6), 106386. DOI: 10.1016/j.jece.2021.106386
  • Behera, B., & Balasubramanian, P. (2021). Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresource Technology, 340, 125721. DOI: 10.1016/j.biortech.2021.125721
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. DOI: 10.1139/o59-099
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1), 25-30. DOI: 10.1016/S0023- 6438(95)80008-5
  • Chaijan, M., Panpipat, W., & Nisoa, M. (2017). Chemical deterioration and discoloration of semi- dried tilapia processed by sun drying and microwave drying. Drying Technology, 35(5), 642-649. DOI: 10.1080/07373937.2016.1199565
  • Dubois, M., Gilles, K.A., Hamilton, J,K., Rerbers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. DOI: 10.1021/ac60111a017
  • Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., & Bux, F. (2014). Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel, 128, 46-52. DOI: 10.1016/j.fuel.2014.02.059
  • Hernández, A., González-Moya, M., Márquez, A., & Acevedo, L.E. (2024). Review Microalgae Drying: A Comprehensive Exploration from Conventional Air Drying to Microwave Drying Methods. Future Foods, 10, 1-17. 100420. DOI: 10.1016/j.fufo.2024.100420
  • Hosseinizand, H., Sokhansanj, S., & Lim, C. J. (2018). Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Drying Technology, 36(9), 1049-1060. DOI: 10.1080/07373937.2017.1369986
  • Kröger, M., Klemm, M., & Nelles, M. (2019). Extraction behavior of different conditioned S. rubescens. Energies, 12(7), 1336. DOI: 10.3390/en12071336
  • Kyriakopoulou, K., Pappa, A., Krokida, M., Detsi, A., & Kefalas, P. (2013). Effects of drying and extraction methods on the quality and antioxidant activity of sea buckthorn (Hippophae rhamnoides) berries and leaves. Drying Technology, 31(9), 1063-1076. DOI: 10.1080/07373937.2013.773907
  • Le Lann, K., Jégou, C., & Stiger‐Pouvreau, V. (2008). Effect of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: Comparison of the frondose Sargassum muticum (Yendo) Fensholt and the cylindrical Bifurcaria bifurcata R. Ross. Phycological Research, 56(4), 238-245. DOI: 10.1111/j.14401835.2008.00505.x
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the folin. Journal Biological Chemistry, 10(3),361-362. DOI: 10.1016/0304- 3894(92)87011-4
  • Madhubalaji, C.K., Mudaliar, S.N., Chauhan, V.S., & Sarada, R. (2021). Evaluation of drying methods on nutritional constituents and antioxidant activities of Chlorella vulgaris cultivated in an outdoor open raceway pond. Journal of Applied Phycology, 33, 1419-1434. DOI: 10.1007/s10811-020-02355-2
  • Megawati, M., Damayanti, A., Putri, R. D. A., Pradnya, I. N., Yahya, H. F. & Arnan, N. K. (2020).Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for Bio-Ethanol Production. Materials Science Forum, 1007, 1-5. DOI: 10.4028/www.scientific.net/MSF.1007.1
  • Ruiz-Domínguez, M.C., Marticorena, P., Sepúlveda, C., Salinas, F., Cerezal, P., & Riquelme, C. (2020). Effect of drying methods on lutein content and recovery by supercritical extraction from the microalga Muriellopsis sp. (MCH35) cultivated in the arid north of Chile. Marine Drugs, 18(11), 528. DOI: 10.3390/md18110528
  • Schmid, B., Navalho, S., Schulze, P.S.C., Van De Walle, S., Van Royen, G., Schüler, L.M., Maia, I.B., Bastos, C.R.V, Baune, M.-C., & Januschewski, E. (2022). Drying microalgae using an industrial solar dryer: a biomass quality assessment. Foods, 11(13), 1873. DOI: 10.3390/foods11131873
  • Sert, B., İnan, B., & Özçimen, D. (2018). Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chimica Slovenica, 65(1), 160-165. DOI: 10.17344/acsi.2017.3728
  • Shekarabi, S.P.H., Mehrgan, M.S., Razi, N., & Sabzi, S. (2019). Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods. The Journal of Microbiology, Biotechnology and Food Sciences, 9(3), 521. DOI: 10.15414/jmbfs.2019/20.9.3.521- 524
  • Stansell, G.R., Gray, V.M., & Sym, S.D. (2012). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24, 791-801. DOI: 10.1007/s10811- 011-9696-x
  • Stramarkou, M., Papadaki, S., Kyriakopoulou, K., & Krokida, M. (2017). Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. Journal of Applied Phycology, 29, 2947-2960. DOI: 10.1007/s10811-017-1181-8
  • Sun, X., Huang, H., Zhao, D., Lin, J., Gao, P., & Yao, L. (2020). Adsorption of Pb2+ onto freeze-dried microalgae and environmental risk assessment. Journal of Environmental Management, 265, 110472. DOI: 10.1016/j.jenvman.2020.110472
  • Van De Walle, S., Gifuni, I., Coleman, B., Baune, M.- C., Rodrigues, A., Cardoso, H., Fanari, F., Muylaert, K., & Van Royen, G. (2024). Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Research International, 182, 114142. DOI: 10.1016/j.foodres.2024.114142
  • Zhang, J.-J., Cao, L.-K., Yi, S.-J., Che, G., Wang, W.- H., Liu, W., Jia, X.-Y., Wei, C.-H., Wang, Y.- F., & Wu, Y.-J. (2022). Proteomic analysis of japonica sorghum following microwave intermittent drying based on label-free technology. Food Science and Technology, 42, e96621. DOI: 10.1590/fst.96621

Farklı Kurutma Yöntemlerinin Chlorella vulgaris, Microcystis aeruginosa ve Haematococcus pluvialis'in Biyokimyasal Kompozisyonuna Etkisi

Yıl 2025, Cilt: 10 Sayı: 4, 457 - 463, 31.07.2025
https://doi.org/10.35229/jaes.1657943

Öz

Mikroalg biyokütlesinin işlenmesinde kritik bir aşama olan kurutma, materyalin biyokimyasal bileşimi üzerinde büyük bir etkiye sahiptir. Bu çalışma, Chlorella vulgaris, Microcystis aeruginosa ve Haematococcus pluvialis'in protein, lipit ve karbonhidrat içeriğinin etüv, liyofilizatör ve mikrodalga kullanılarak kurutulmasından nasıl etkilendiğini değerlendirmektedir. Bulgular, düşük ısı nedeniyle liyofilizasyonun tüm türler arasında en yüksek protein (%30-55) ve lipit (%10-35) içeriğini koruduğunu göstermektedir. Ancak diğer makromoleküllerin parçalanması nedeniyle etüvde kurutma ve mikrodalga kurutma, göreceli olarak karbonhidrat içeriğini %35'e kadar daha yüksek çıkmasını sağlamıştır. En yüksek antioksidan aktivitenin M. aeruginosa'da olduğu belirlenmiştir. Biyokimyasal bileşime benzer şekilde dondurarak kurutma en yüksek seviyeleri korurken, etüvde kurutma ve mikrodalga kurutma orta ve yüksek düzeyde kayıplara neden olmaktadır. Bunun nedeni muhtemelen antioksidan kimyasalların ısıya duyarlı olması ve sıcak ortamlarda kolayca oksitlenip parçalanmasıdır. Bu sonuçlar, etüvde kurutma ve mikrodalga kurutmanın biyoyakıt üretimi de dahil olmak üzere karbonhidrat açısından zengin biyokütle gerektiren uygulamalar için daha uygun olabileceğini gösterirken, dondurarak kurutmanın yüksek değerli biyokimyasal bileşenleri korumak için önerilen teknik olduğunu göstermektedir. Doğru kurutma tekniğini seçmek, çeşitli endüstriyel uygulamalarda biyokütlenin kullanımını en üst düzeye çıkarmak için çok önemlidir.

Kaynakça

  • Agbede, O.O., Oke, E.O., Akinfenwa, S.I., Wahab, K.T., Ogundipe, S., Aworanti, O.A., Arinkoola, A.O., Agarry, S.E., Ogunleye, O.O., & Osuolale, F.N. (2020). Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling. Bioresource Technology Reports, 11, 100467. DOI: 10.1016/j.biteb.2020.100467
  • Aljabri, H., Cherif, M., Siddiqui, S.A., Bounnit, T., & Saadaoui, I. (2023). Evidence of the drying technique’s impact on the biomass quality of Tetraselmis subcordiformis (Chlorophyceae). Biotechnology for Biofuels and Bioproducts, 16(1), 85. DOI: 10.1186/s13068-023-02335-x
  • Amin, M., Chetpattananondh, P., Cheng, C.K., Sami, S.K., & Khan, M.N. (2021). Drying characteristics and impacts on quality of marine Chlorella sp. biomass and extracts for fuel applications. Journal of Environmental Chemical Engineering, 9(6), 106386. DOI: 10.1016/j.jece.2021.106386
  • Behera, B., & Balasubramanian, P. (2021). Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresource Technology, 340, 125721. DOI: 10.1016/j.biortech.2021.125721
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. DOI: 10.1139/o59-099
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1), 25-30. DOI: 10.1016/S0023- 6438(95)80008-5
  • Chaijan, M., Panpipat, W., & Nisoa, M. (2017). Chemical deterioration and discoloration of semi- dried tilapia processed by sun drying and microwave drying. Drying Technology, 35(5), 642-649. DOI: 10.1080/07373937.2016.1199565
  • Dubois, M., Gilles, K.A., Hamilton, J,K., Rerbers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. DOI: 10.1021/ac60111a017
  • Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., & Bux, F. (2014). Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel, 128, 46-52. DOI: 10.1016/j.fuel.2014.02.059
  • Hernández, A., González-Moya, M., Márquez, A., & Acevedo, L.E. (2024). Review Microalgae Drying: A Comprehensive Exploration from Conventional Air Drying to Microwave Drying Methods. Future Foods, 10, 1-17. 100420. DOI: 10.1016/j.fufo.2024.100420
  • Hosseinizand, H., Sokhansanj, S., & Lim, C. J. (2018). Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Drying Technology, 36(9), 1049-1060. DOI: 10.1080/07373937.2017.1369986
  • Kröger, M., Klemm, M., & Nelles, M. (2019). Extraction behavior of different conditioned S. rubescens. Energies, 12(7), 1336. DOI: 10.3390/en12071336
  • Kyriakopoulou, K., Pappa, A., Krokida, M., Detsi, A., & Kefalas, P. (2013). Effects of drying and extraction methods on the quality and antioxidant activity of sea buckthorn (Hippophae rhamnoides) berries and leaves. Drying Technology, 31(9), 1063-1076. DOI: 10.1080/07373937.2013.773907
  • Le Lann, K., Jégou, C., & Stiger‐Pouvreau, V. (2008). Effect of different conditioning treatments on total phenolic content and antioxidant activities in two Sargassacean species: Comparison of the frondose Sargassum muticum (Yendo) Fensholt and the cylindrical Bifurcaria bifurcata R. Ross. Phycological Research, 56(4), 238-245. DOI: 10.1111/j.14401835.2008.00505.x
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the folin. Journal Biological Chemistry, 10(3),361-362. DOI: 10.1016/0304- 3894(92)87011-4
  • Madhubalaji, C.K., Mudaliar, S.N., Chauhan, V.S., & Sarada, R. (2021). Evaluation of drying methods on nutritional constituents and antioxidant activities of Chlorella vulgaris cultivated in an outdoor open raceway pond. Journal of Applied Phycology, 33, 1419-1434. DOI: 10.1007/s10811-020-02355-2
  • Megawati, M., Damayanti, A., Putri, R. D. A., Pradnya, I. N., Yahya, H. F. & Arnan, N. K. (2020).Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for Bio-Ethanol Production. Materials Science Forum, 1007, 1-5. DOI: 10.4028/www.scientific.net/MSF.1007.1
  • Ruiz-Domínguez, M.C., Marticorena, P., Sepúlveda, C., Salinas, F., Cerezal, P., & Riquelme, C. (2020). Effect of drying methods on lutein content and recovery by supercritical extraction from the microalga Muriellopsis sp. (MCH35) cultivated in the arid north of Chile. Marine Drugs, 18(11), 528. DOI: 10.3390/md18110528
  • Schmid, B., Navalho, S., Schulze, P.S.C., Van De Walle, S., Van Royen, G., Schüler, L.M., Maia, I.B., Bastos, C.R.V, Baune, M.-C., & Januschewski, E. (2022). Drying microalgae using an industrial solar dryer: a biomass quality assessment. Foods, 11(13), 1873. DOI: 10.3390/foods11131873
  • Sert, B., İnan, B., & Özçimen, D. (2018). Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chimica Slovenica, 65(1), 160-165. DOI: 10.17344/acsi.2017.3728
  • Shekarabi, S.P.H., Mehrgan, M.S., Razi, N., & Sabzi, S. (2019). Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods. The Journal of Microbiology, Biotechnology and Food Sciences, 9(3), 521. DOI: 10.15414/jmbfs.2019/20.9.3.521- 524
  • Stansell, G.R., Gray, V.M., & Sym, S.D. (2012). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24, 791-801. DOI: 10.1007/s10811- 011-9696-x
  • Stramarkou, M., Papadaki, S., Kyriakopoulou, K., & Krokida, M. (2017). Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris. Journal of Applied Phycology, 29, 2947-2960. DOI: 10.1007/s10811-017-1181-8
  • Sun, X., Huang, H., Zhao, D., Lin, J., Gao, P., & Yao, L. (2020). Adsorption of Pb2+ onto freeze-dried microalgae and environmental risk assessment. Journal of Environmental Management, 265, 110472. DOI: 10.1016/j.jenvman.2020.110472
  • Van De Walle, S., Gifuni, I., Coleman, B., Baune, M.- C., Rodrigues, A., Cardoso, H., Fanari, F., Muylaert, K., & Van Royen, G. (2024). Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Research International, 182, 114142. DOI: 10.1016/j.foodres.2024.114142
  • Zhang, J.-J., Cao, L.-K., Yi, S.-J., Che, G., Wang, W.- H., Liu, W., Jia, X.-Y., Wei, C.-H., Wang, Y.- F., & Wu, Y.-J. (2022). Proteomic analysis of japonica sorghum following microwave intermittent drying based on label-free technology. Food Science and Technology, 42, e96621. DOI: 10.1590/fst.96621
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sucul Kültür
Bölüm Makaleler
Yazarlar

Benan İnan 0000-0002-2315-3099

Erken Görünüm Tarihi 22 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 14 Mart 2025
Kabul Tarihi 7 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 4

Kaynak Göster

APA İnan, B. (2025). Effect of Different Drying Methods on Biochemical Composition of Chlorella vulgaris, Microcystis aeruginosa and Haematococcus pluvialis. Journal of Anatolian Environmental and Animal Sciences, 10(4), 457-463. https://doi.org/10.35229/jaes.1657943