Araştırma Makalesi
BibTex RIS Kaynak Göster

Acidithiobacillus ferrooxidans Kullanılarak Gerçekleştirilen Kalkopirit Cevherinin Biyoliç İşlemine Deniz Suyu İlavesinin Etkisi

Yıl 2025, Cilt: 10 Sayı: 6, 760 - 767, 30.11.2025
https://doi.org/10.35229/jaes.1708136

Öz

Bu çalışmada, Kastamonu Hanönü bakır cevheri üzerinde, deniz suyu varlığında Acidithiobacillus ferrooxidans bakterisi kullanılarak biyoliç deneyleri gerçekleştirilmiştir. Numunenin karakterizasyonu XRD, XRF ve SEM analiz yöntemleri ile yapılmıştır. Biyoliç deneyleri sırasında, 360 saatlik test süresi boyunca bakteri konsantrasyonu, pH, bakır ve demir konsantrasyonları izlenmiştir. Sonuçlar, uygun bir deniz suyu oranının bakır geri kazanımını önemli ölçüde artırdığını ve katı-sıvı oranının bu süreçte kritik bir rol oynadığını göstermiştir. %30,00 deniz suyu varlığında ve %7 katı oranında, maksimum %81,43 bakır geri kazanımı elde edilirken, deniz suyu olmadan bu oran yalnızca %71,02 olarak gerçekleşmiştir. Bu çalışma, deniz suyunun hem çevresel hem de ekonomik faydalar sunan alternatif bir çözücü ortamı olarak potansiyelini vurgulamaktadır. Ayrıca, biyoliç yönteminin çevre dostu ve verimli bir süreç olarak uygulanabilirliği vurgulanmaktadır.

Etik Beyan

Bu çalışma, etik kurul onayı gerektirmeyen bir çalışma kapsamında yürütülmüştür.

Destekleyen Kurum

Yazar araştırma için herhangi bir fon desteği almamıştır

Teşekkür

Yazar, makalenin değerlendirilmesi ve incelenmesi sürecinde editör ve hakemlerin değerli yorumları ile yapıcı önerileri için teşekkür eder.

Kaynakça

  • Akakçe, N. (2023). Identifying Trace Element Concentrations in Coastal Seawater in Western Anatolia. Journal of Anatolian Environmental and Animal Sciences, 8(4), 612-615. DOI: 10.35229/jaes.1334864
  • Akçıl, A., & Çiftçi, H. (2003). Bacterial leaching of Kure copper ore. Scientific Mining Journal, 42(4), 15- 25.
  • Akçıl, A., & Çiftçi, H. (2006). Mechanisms of bacterial leaching in metal recovery. Scientific Mining Journal, 45(4), 19-27.
  • Atzori, G., Mancuso, S., & Masi, E. (2019). Seawater potential use in soilless culture: A review. Scientia Horticulturae, 249, 199-207. DOI: 10.1016/j.scienta.2019.01.035
  • Baba, A.A., Ayinla, K.I., Adekola, F.A., Ghosh, M.K., Ayanda, O.S., Bale, R.B., Sheik, A.R., & Pradhan, S.R. (2012). A review on novel techniques for chalcopyrite ore processing. International Journal of Mining Engineering and Mineral Processing, 1(1), 1-16. DOI: 10.5923/j.mining.20120101.01
  • Chen, W., Yin, S., Wu, A., Wang, L., & Chen, X. (2020). Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresource Technology, 297, 122453. DOI: 10.1016/j.biortech.2019.122453
  • Demirci, S. & Bayat, O. (2017). Effects of Ultraviolet Irradiation on Bacterial (Acidithiobacillus Ferrooxidans) Mutation and Bioleaching of Refractory Gold Ores from the Ovacik Gold Mine, Turkey. International Journal for Research in Applied Science and Engineering Technology, 5, 2304-2317.
  • Dong, Y.B., Lin, H., Zhou, S., Xu, X., & Zhang, Y. (2013). Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Minerals Engineering, 46-47, 177-179. DOI: 10.1016/j.mineng.2013.04.014
  • Granata, G., Takahashi, K., Kato, T., & Tokoro, C. (2019). Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement. Minerals Engineering, 131, 280-285. DOI: 10.1016/j.mineng.2018.11.027
  • Gu, T., Rastegar, S.O., Mousavi, S.M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 261, 428-440. DOI: 10.1016/j.biortech.2018.04.033
  • Gu, C.Y., Zhang, R.Y., Xia, J.L., Liu, H.C., Sand, W., Wang, Y.R., Chen, L., Nie, Z.Y., Zhang, Y.S., & Wang, J. (2025). Chalcopyrite bioleaching by an enriched microbial community in acidic artificial seawater. Journal of Central South University, 32(5), 1802-1821. DOI: 10.1007/s11771-025-5957-8
  • Huynh, D., Haferburg, G., Bunk, B., Kaschabek, S. R., Sand, W., & Schlömann, M. (2024). Alicyclobacillus sp. SO9, a novel halophilic acidophilic iron-oxidizing bacterium isolated from a tailings-contaminated beach, and its effect on copper extraction from chalcopyrite in the presence of high chloride concentration. Research in Microbiology, 175 104150. DOI: 10.1016/j.resmic.2023.104150
  • Joulian, C., Hubau, A., Pino-Herrera, D.O., & Guezennec, A. (2023). Bioleaching of polymetallic sulphidic mining residues: Influence of increasing solid concentration on microbial community dynamics and metal dissolution. Research in Microbiology, 175(1-2) 104112. DOI: 10.1016/j.resmic.2023.104112
  • Liang, C.L., Xia, J.L., Zhao, X.J., Yang, Y., Gong, S.Q., Nie, Z.Y., Ma, C.Y., Zheng, L., Zhao, Y.D., & Qiu, G.Z. (2010). Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 105(1-2), 179-185. DOI: 10.1016/j.hydromet.2010.07.012
  • Liang, C.L., Xia, J.L., Nie, Z.Y., Yang, Y., & Ma, C.Y. (2012). Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresource Technology, 110, 462-467. DOI: 10.1016/j.biortech.2012.01.084
  • Lopez Juarez, A.L., Rivera Santillan, R.E., & Gutierrez Arenas, N. (2006). Microbiological leaching of chalcopyrite: An environmentally sound approach to processing a sulphide copper concentrate. International Journal of Environment and Pollution, 26(1-3), 254-265. DOI: 10.1504/IJEP.2006.009110
  • Nkuna, R., Ijoma, G.N., Matambo, T.S., & Chimwani, N. (2022). Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals, 12, 506. DOI: 10.3390/min12050506
  • Owusu, C., Brito e Abreu, S., Skinner, W., Addai- Mensah, J., & Zanin, M. (2014). The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95. DOI: 10.1016/j.mineng.2013.09.018
  • Petersen, J. (2023). From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design. Hydrometallurgy, 221, 106148. DOI: 10.1016/j.hydromet.2023.106148
  • Rathna, R., & Nakkeeran, E. (2020). Biological treatment for the recovery of minerals from low- grade ores. In S. Varjani, A. Pandey, E. Gnansounou, S. K. Khanal, & S. Raveendran (Eds.), Current developments in biotechnology and bioengineering (pp. 437-458). Elsevier. DOI: 10.1016/B978-0-444-64321-6.00022-7
  • Sajjad, W., Zheng, G., Ma, X., Xu, W., Ali, B., Rafiq, M., Zada, S., Irfan, M., & Zeman, J. (2020). Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. Science of the Total Environment, 709, 136136. DOI: 10.1016/j.scitotenv.2019.136136
  • Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., & Willscher, S. (2014). Biomining: Metal recovery from ores with microorganisms. In A. Schippers, F. Glombitza, & W. Sand (Eds.), Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, 141, Springer. DOI: 10.1007/10_2013_216
  • Torres, D., Ayala, L., Jeldres, R.I., Cerecedo-Sáenz, E., Salinas-Rodríguez, E., Robles, P., & Toro, N. (2020). Leaching chalcopyrite with high MnO₂ and chloride concentrations. Metals, 10(1), 107. DOI: 10.3390/met10010107
  • Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A. & Holmes, D. (2008). Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 9, 597. DOI: 10.1186/1471-2164-9-597
  • Vilcáez, J., Yamada, R. & Inoue, C. (2009). Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures. Hydrometallurgy, 96(1-2), 62-71. DOI: 10.1016/j.hydromet.2008.08.003
  • Yang, S., Han, Z., Pan, X., Liu, B., & Zheng, D. (2018). Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 354, 653-662. DOI: 10.1016/j.cej.2018.07.191
  • Zhang, R., Wei, D., Shen, Y., Liu, W., Lu, T., & Han, C. (2016). Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering, 95, 74-78. DOI: 10.1016/j.mineng.2016.06.021

Influence of Seawater Addition on the Bioleaching Process of Chalcopyrite Ore Using Acidithiobacillus ferrooxidans

Yıl 2025, Cilt: 10 Sayı: 6, 760 - 767, 30.11.2025
https://doi.org/10.35229/jaes.1708136

Öz

In this study, bioleaching experiments on Kastamonu Hanönü copper ore were conducted using the bacterium Acidithiobacillus ferrooxidans in the presence of seawater. The characterization of the sample was performed using XRD, XRF, and SEM analysis methods. During the bioleaching experiments, bacteria concentration, pH, copper and iron concentrations were monitored over the 360-hour test period. The results demonstrated that an appropriate proportion of seawater significantly promoted copper recovery, with the solid-to-liquid ratio playing a key role. A maximum copper recovery of 81.43% was achieved in the presence of 30.00% seawater, 7% solid rate compared to only 71.02% in its absence. This study highlights the potential of seawater as an alternative solvent medium, offering both environmental and economic benefits. Moreover, the findings emphasize the applicability of the bioleaching method as an environmentally friendly and efficient process.

Etik Beyan

This study was conducted within the scope of a research that did not require ethical approval.

Destekleyen Kurum

The author received no funding for the research.

Teşekkür

The author gratefully acknowledges the editor and reviewers for their insightful comments and constructive suggestions during the review and evaluation process of the manuscript.

Kaynakça

  • Akakçe, N. (2023). Identifying Trace Element Concentrations in Coastal Seawater in Western Anatolia. Journal of Anatolian Environmental and Animal Sciences, 8(4), 612-615. DOI: 10.35229/jaes.1334864
  • Akçıl, A., & Çiftçi, H. (2003). Bacterial leaching of Kure copper ore. Scientific Mining Journal, 42(4), 15- 25.
  • Akçıl, A., & Çiftçi, H. (2006). Mechanisms of bacterial leaching in metal recovery. Scientific Mining Journal, 45(4), 19-27.
  • Atzori, G., Mancuso, S., & Masi, E. (2019). Seawater potential use in soilless culture: A review. Scientia Horticulturae, 249, 199-207. DOI: 10.1016/j.scienta.2019.01.035
  • Baba, A.A., Ayinla, K.I., Adekola, F.A., Ghosh, M.K., Ayanda, O.S., Bale, R.B., Sheik, A.R., & Pradhan, S.R. (2012). A review on novel techniques for chalcopyrite ore processing. International Journal of Mining Engineering and Mineral Processing, 1(1), 1-16. DOI: 10.5923/j.mining.20120101.01
  • Chen, W., Yin, S., Wu, A., Wang, L., & Chen, X. (2020). Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresource Technology, 297, 122453. DOI: 10.1016/j.biortech.2019.122453
  • Demirci, S. & Bayat, O. (2017). Effects of Ultraviolet Irradiation on Bacterial (Acidithiobacillus Ferrooxidans) Mutation and Bioleaching of Refractory Gold Ores from the Ovacik Gold Mine, Turkey. International Journal for Research in Applied Science and Engineering Technology, 5, 2304-2317.
  • Dong, Y.B., Lin, H., Zhou, S., Xu, X., & Zhang, Y. (2013). Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Minerals Engineering, 46-47, 177-179. DOI: 10.1016/j.mineng.2013.04.014
  • Granata, G., Takahashi, K., Kato, T., & Tokoro, C. (2019). Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement. Minerals Engineering, 131, 280-285. DOI: 10.1016/j.mineng.2018.11.027
  • Gu, T., Rastegar, S.O., Mousavi, S.M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 261, 428-440. DOI: 10.1016/j.biortech.2018.04.033
  • Gu, C.Y., Zhang, R.Y., Xia, J.L., Liu, H.C., Sand, W., Wang, Y.R., Chen, L., Nie, Z.Y., Zhang, Y.S., & Wang, J. (2025). Chalcopyrite bioleaching by an enriched microbial community in acidic artificial seawater. Journal of Central South University, 32(5), 1802-1821. DOI: 10.1007/s11771-025-5957-8
  • Huynh, D., Haferburg, G., Bunk, B., Kaschabek, S. R., Sand, W., & Schlömann, M. (2024). Alicyclobacillus sp. SO9, a novel halophilic acidophilic iron-oxidizing bacterium isolated from a tailings-contaminated beach, and its effect on copper extraction from chalcopyrite in the presence of high chloride concentration. Research in Microbiology, 175 104150. DOI: 10.1016/j.resmic.2023.104150
  • Joulian, C., Hubau, A., Pino-Herrera, D.O., & Guezennec, A. (2023). Bioleaching of polymetallic sulphidic mining residues: Influence of increasing solid concentration on microbial community dynamics and metal dissolution. Research in Microbiology, 175(1-2) 104112. DOI: 10.1016/j.resmic.2023.104112
  • Liang, C.L., Xia, J.L., Zhao, X.J., Yang, Y., Gong, S.Q., Nie, Z.Y., Ma, C.Y., Zheng, L., Zhao, Y.D., & Qiu, G.Z. (2010). Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 105(1-2), 179-185. DOI: 10.1016/j.hydromet.2010.07.012
  • Liang, C.L., Xia, J.L., Nie, Z.Y., Yang, Y., & Ma, C.Y. (2012). Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresource Technology, 110, 462-467. DOI: 10.1016/j.biortech.2012.01.084
  • Lopez Juarez, A.L., Rivera Santillan, R.E., & Gutierrez Arenas, N. (2006). Microbiological leaching of chalcopyrite: An environmentally sound approach to processing a sulphide copper concentrate. International Journal of Environment and Pollution, 26(1-3), 254-265. DOI: 10.1504/IJEP.2006.009110
  • Nkuna, R., Ijoma, G.N., Matambo, T.S., & Chimwani, N. (2022). Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals, 12, 506. DOI: 10.3390/min12050506
  • Owusu, C., Brito e Abreu, S., Skinner, W., Addai- Mensah, J., & Zanin, M. (2014). The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95. DOI: 10.1016/j.mineng.2013.09.018
  • Petersen, J. (2023). From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design. Hydrometallurgy, 221, 106148. DOI: 10.1016/j.hydromet.2023.106148
  • Rathna, R., & Nakkeeran, E. (2020). Biological treatment for the recovery of minerals from low- grade ores. In S. Varjani, A. Pandey, E. Gnansounou, S. K. Khanal, & S. Raveendran (Eds.), Current developments in biotechnology and bioengineering (pp. 437-458). Elsevier. DOI: 10.1016/B978-0-444-64321-6.00022-7
  • Sajjad, W., Zheng, G., Ma, X., Xu, W., Ali, B., Rafiq, M., Zada, S., Irfan, M., & Zeman, J. (2020). Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. Science of the Total Environment, 709, 136136. DOI: 10.1016/j.scitotenv.2019.136136
  • Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., & Willscher, S. (2014). Biomining: Metal recovery from ores with microorganisms. In A. Schippers, F. Glombitza, & W. Sand (Eds.), Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, 141, Springer. DOI: 10.1007/10_2013_216
  • Torres, D., Ayala, L., Jeldres, R.I., Cerecedo-Sáenz, E., Salinas-Rodríguez, E., Robles, P., & Toro, N. (2020). Leaching chalcopyrite with high MnO₂ and chloride concentrations. Metals, 10(1), 107. DOI: 10.3390/met10010107
  • Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A. & Holmes, D. (2008). Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 9, 597. DOI: 10.1186/1471-2164-9-597
  • Vilcáez, J., Yamada, R. & Inoue, C. (2009). Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures. Hydrometallurgy, 96(1-2), 62-71. DOI: 10.1016/j.hydromet.2008.08.003
  • Yang, S., Han, Z., Pan, X., Liu, B., & Zheng, D. (2018). Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 354, 653-662. DOI: 10.1016/j.cej.2018.07.191
  • Zhang, R., Wei, D., Shen, Y., Liu, W., Lu, T., & Han, C. (2016). Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering, 95, 74-78. DOI: 10.1016/j.mineng.2016.06.021
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel Değerlendirme ve İzleme, Doğal Kaynak Yönetimi, Çevre Yönetimi (Diğer), Tatlısu ve Deniz Ekolojisi
Bölüm Araştırma Makalesi
Yazarlar

Zehra Çetinkaya 0000-0002-0553-0102

Gönderilme Tarihi 28 Mayıs 2025
Kabul Tarihi 3 Ekim 2025
Erken Görünüm Tarihi 15 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 6

Kaynak Göster

APA Çetinkaya, Z. (2025). Influence of Seawater Addition on the Bioleaching Process of Chalcopyrite Ore Using Acidithiobacillus ferrooxidans. Journal of Anatolian Environmental and Animal Sciences, 10(6), 760-767. https://doi.org/10.35229/jaes.1708136