Derleme
BibTex RIS Kaynak Göster

Insect Meal in Aquaculture Feeds-Historical Development, Current Applications, and Future Perspectives

Yıl 2025, Cilt: 10 Sayı: 6, 902 - 912, 30.11.2025
https://doi.org/10.35229/jaes.1768797

Öz

Global aquaculture production, reaching 223 million tons in 2022, has outpaced wild-capture fisheries, escalating dependence on unsustainable fishmeal resources. Insect meals offer a sustainable alternative, providing high crude protein, balanced amino acid profiles, and bioactive compounds like chitin, lauric acid, and antimicrobial peptides. These support growth, gut health, and immunity in species such as salmon, tilapia, and shrimp, with feeding trials showing up to 100% fishmeal replacement without compromising performance in certain cases. Reared on agro-industrial by-products, insect meals align with circular economy principles, reducing land and water use and alleviating pressure on marine ecosystems. Challenges include high production costs (US $3,800–6,000/ton), substrate contamination risks from heavy metals or chemical residues, and regulatory disparities, though the European Union’s 2017 Regulation (EU 2017/893) marked a key milestone by authorizing several insect species for aquafeeds. Future research priorities, while more briefly addressed, include assessing how rearing substrates influence nutritional profiles and exploring insect meal formulations. This review traces the historical evolution of insect meal use in aquafeeds, examines nutritional benefits, application outcomes, economic constraints, and environmental advantages, and highlights both the opportunities and challenges for large-scale adoption in sustainable aquaculture.

Kaynakça

  • Abdel-Ghany, H.M., & Salem, M.E.-S. (2020). Effects of dietary chitosan supplementation on farmed fish; a review. Reviews in Aquaculture, 12(1), 438-452. DOI: 10.1111/raq.12326
  • Abdel-Tawwab, M., Khalil, R.H., Metwally, A.A., Shakweer, M.S., Khallaf, M.A., & Abdel-Latif, H.M.R. (2020). Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture, 522, 735136. DOI: 10.1016/j.aquaculture.2020.735136
  • Aguilar-Toalá, J.E., Cruz-Monterrosa, R.G., & Liceaga, A.M. (2022). Beyond human nutrition of edible insects: Health benefits and safety aspects. Insects, 13(11), 1007. DOI: 10.3390/insects13111007
  • Ahmed, F., Soliman, F.M., Adly, M.A., Soliman, H.A.M., El-Matbouli, M., & Saleh, M. (2021). Dietary chitosan nanoparticles: potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial defense and intestinal immunity against enteric redmouth disease. Marine Drugs, 19(2), 72. DOI: 10.3390/md19020072
  • Alofa, C.S., Olodo, I.Y., Chabi Kpéra Orou Nari, M., & Abou, Y. (2023). Effects of the fresh and dried housefly (Musca domestica) larvae in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758): Growth, feed utilization efficiency, body composition and biological indices. Aquatic Research, 6(1), 1-10. DOI: 10.3153/AR23001
  • Alves, A.P. do C., Paulino, R.R., Pereira, R.T., da Costa, D.V., & Rosa, P.V. (2021). Nile tilapia fed insect meal: Growth and innate immune response in different times under lipopolysaccharide challenge. Aquaculture Research, 52(2), 529-540. DOI: 10.1111/are.14911
  • Anany, E.M., Ibrahim, M.A., El-Razek, I.M.A., El- Nabawy, E.-S.M., Amer, A.A., Zaineldin, A.I., Gewaily, M.S., & Dawood, M.A.O. (2025). Combined effects of yellow mealworm (Tenebrio molitor) and Saccharomyces cerevisiae on the growth performance, feed utilization intestinal health, and blood biomarkers of Nile tilapia (Oreochromis niloticus) fed fish meal-free diets. Probiotics and Antimicrobial Proteins, 17(3), 1387-1398. DOI: 10.1007/s12602-023-10199-8
  • Andresen, A.M.S., & Gjøen, T. (2021). Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 40, 100915. DOI: 10.1016/j.cbd.2021.100915
  • Aragão, C., Gonçalves, A.T., Costas, B., Azeredo, R., Xavier, M.J., & Engrola, S. (2022). Alternative proteins for fish diets: Implications beyond growth. Animals, 12(9), 1211. DOI: 10.3390/ani12091211
  • Arru, B., Furesi, R., Gasco, L., Madau, F.A., & Pulina, P. (2019). The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability, 11(6), 1697. DOI: 10.3390/su11061697
  • Auzins, A., Leimane, I., Reissaar, R., Brobakk, J., Sakelaite, I., Grivins, M., & Zihare, L. (2024). Assessing the socio-economic benefits and costs of insect meal as a fishmeal substitute in livestock and aquaculture. Animals, 14(10), 1461. DOI: 10.3390/ani14101461
  • Basto, A., Valente, L.M.P., Sousa, V., Conde-Sieira, M., & Soengas, J.L. (2023). Total fishmeal replacement by defatted Tenebrio molitor larvae meal induces alterations in intermediary metabolism of European sea bass (Dicentrarchus labrax). Journal of Animal Science, 101, skad040. DOI: 10.1093/jas/skad040
  • Biteau, C., Bry-Chevalier, T., Crummett, D., Ryba, R., & Jules, M. St. (2024). Insect-based livestock feeds are unlikely to become economically viable in the near future. Food and Humanity, 3, 100383. DOI: 10.1016/j.foohum.2024.100383
  • Boissat, L. (2025). Sustainability in aquaculture feed: Why insect farming is not the answer [Insight article]. FAIRR Initiative. Retrieved March 26, 2025, from https://www.fairr.org/news- events/insights/sustainability-in-aquaculture- feed-why-insect-farming-is-not-the-answer
  • Bruni, L., Pastorelli, R., Viti, C., Gasco, L., & Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487, 56-63. DOI: 10.1016/j.aquaculture.2018.01.006
  • Bruni, L., Randazzo, B., Cardinaletti, G., Zarantoniello, M., Mina, F., Secci, G., Tulli, F., Olivotto, I., & Parisi, G. (2020). Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture, 529, 735678. DOI: 10.1016/j.aquaculture.2020.735678
  • Carvalho, M., Torrecillas, S., Montero, D., Sanmartín, A., Fontanillas, R., Farías, A., Moutou, K., Hernández Velásquez, J., & Izquierdo, M. (2023). Insect and single-cell protein meals as replacers of fish meal in low fish meal and fish oil diets for gilthead sea bream (Sparus aurata) juveniles. Aquaculture, 566, 739215. DOI: 10.1016/j.aquaculture.2022.739215
  • Chang, C.L., Chang, S.C., Lin, L.J., Chang, J.S., Lin, M.J., & Lee, T.T. (2025). Assessment of Hermetia illucens pupal exuviae fermented by Bacillus amyloliquefaciens as functional feed additive for red feather native chickens. Poultry Science, 104(10), 105584. DOI: 10.1016/j.psj.2025.105584
  • Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Nogales, B., Overgaard, J., Heckmann, L.H., & Smith, R. (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed, 1(1), 7-16. DOI: 10.3920/JIFF2014.0020
  • Chemello, G., Renna, M., Caimi, C., Guerreiro, I., Oliva-Teles, A., Enes, P., Biasato, I., Schiavone, A., Gai, F., & Gasco, L. (2020). Partially defatted Tenebrio molitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): Effects on growth performance, diet digestibility and metabolic responses. Animals, 10(2), 229. DOI: 10.3390/ani10020229
  • Chen, H., Yu, J., Ran, X., Wu, J., Chen, Y., Tan, B., & Lin, S. (2023). Effects of yellow mealworm (Tenebrio molitor) on growth performance, hepatic health and digestibility in juvenile largemouth bass (Micropterus salmoides). Animals, 13(8), 1389. DOI: 10.3390/ani13081389
  • Costa-Neto, E.M., & Dunkel, F.V. (2016). Insects as food: History, culture, and modern use around the world. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients: Production, processing and food applications (pp. 29-60). Academic Press. DOI: 10.1016/B978-0-12-802856-8.00002-8
  • de Jong, J., & Nikolik, G. (2021). No longer crawling: Insect protein to come of age in the 2020s. RaboResearch, Rabobank. Retrieved September 4, 2025, from https://insectfeed.nl/wp- content/uploads/2021/03/Rabobank_No-Longer- Crawling-Insect-Protein-to-Come-of-Age-in-the- 2020s_Feb2021-1.pdf
  • Dong, L., Ariëns, R. M. C., Tomassen, M. M., Wichers, H. J., & Govers, C. (2020). In vitro studies toward the use of chitin as nutraceutical: impact on the intestinal epithelium, macrophages, and microbiota. Molecular Nutrition & Food Research, 64(23), 2000324. DOI: 10.1002/mnfr.202000324
  • European Commission. (2017). Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 and Annexes X, XIV and XV to Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Official Journal of the European Union, L 138, 92–116. Retrieved March 26, 2025, from https://eur- lex.europa.eu/legal-content/EN/TXT/?uri= CELEX:32017R0893
  • Fadl, S.E., El-Gammal, G.A., Abdo, W.S., Barakat, M., Sakr, O.A., Nassef, E., Gad, D.M., & El- Sheshtawy, H.S. (2020). Evaluation of dietary chitosan effects on growth performance, immunity, body composition and histopathology of Nile tilapia (Oreochromis niloticus) as well as the resistance to Streptococcus agalactiae infection. Aquaculture Research, 51(3), 1120- 1132. DOI: 10.1111/are.14458
  • Fan, K., Liu, H., Pei, Z., Brown, P.B., & Huang, Y. (2023). A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile channel catfish. Animal Feed Science and Technology, 295, 115542. DOI: 10.1016/j.anifeedsci.2022.115542
  • Fantatto, R.R., Mota, J., Ligeiro, C., Vieira, I., Guilgur, L.G., Santos, M., & Murta, D. (2024). Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquaculture Reports, 37, 102228. DOI: 10.1016/j.aqrep.2024.102228
  • Fawole, F.J., Shamna, N., Memudu, H.A., Abdullahi, N., Hassaan, M.S., & Gbadamosi, O.K. (2023). Housefly maggot meal complement soybean meal in a fish-free diet for hybrid catfish (Clarias gariepinus ♀ x Heterobranchus longifilis ♂): Effect on growth, body composition, blood biochemistry and antioxidant enzyme activity. Animal Feed Science and Technology, 295, 115543. DOI: 10.1016/j.anifeedsci.2022.115543
  • Fontinha, F., Martins, N., Campos, G., Peres, H., & Oliva-Teles, A. (2024). The effects of short-chain fatty acids in gut immune and oxidative responses of European sea bass (Dicentrarchus labrax): An ex vivo approach. Animals, 14(9), 1360. DOI: 10.3390/ani14091360
  • Food and Agriculture Organization of the United Nations (FAO). (2024). The state of world fisheries and aquaculture 2024: Blue transformation in action. Rome: FAO. DOI: 10.4060/cd0683en
  • Franco, A., Scieuzo, C., Salvia, R., Petrone, A.M., Tafi, E., Moretta, A., Schmitt, E., & Falabella, P. (2021). Lipids from Hermetia illucens, an innovative and sustainable source. Sustainability, 13(18), 10198. DOI: 10.3390/su131810198
  • Gasco, L., Finke, M., & van Huis, A. (2018). Can diets containing insects promote animal health? Journal of Insects as Food and Feed, 4(1), 1–4. DOI: 10.3920/JIFF2018.x001
  • Gopalakannan, A., & Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255(1), 179-187. DOI: 10.1016/j.aquaculture.2006.01.012
  • Hameed, A., Majeed, W., Naveed, M., Ramzan, U., Bordiga, M., Hameed, M., Ur Rehman, S., & Rana, N. (2022). Success of aquaculture industry with new insights of using insects as feed: A review. Fishes, 7(6), 395. DOI: 10.3390/fishes7060395
  • Hanan, M.Y., Amatul-Samahah, Md. A., Jaapar, M.Z., & Mohamad, S.N. (2022). The effects of field cricket (Gryllus bimaculatus) meal substitution on growth performance and feed utilization of hybrid red tilapia (Oreochromis spp.). Applied Food Research, 2(1), 100070. DOI: 10.1016/j.afres.2022.100070
  • Hasan, I., Gai, F., Cirrincione, S., Rimoldi, S., Saroglia, G., & Terova, G. (2023). Chitinase and insect meal in aquaculture nutrition: a comprehensive overview of the latest achievements. Fishes, 8(12). DOI: 10.3390/fishes8120607
  • Hashizume, A., Ido, A., Ohta, T., Thiaw, S.T., Morita, R., Nishikawa, M., Takahashi, T., & Miura, T. (2019). Housefly (Musca domestica) larvae preparations after removing the hydrophobic fraction are effective alternatives to fish meal in aquaculture feed for red seabream (Pagrus major). Fishes, 4(3), 38. DOI: 10.3390/fishes4030038
  • Henriques, B.S., Garcia, E.S., Azambuja, P., & Genta, F.A. (2020). Determination of chitin content in insects: An alternate method based on calcofluor staining. Frontiers in Physiology, 11, 117. DOI: 10.3389/fphys.2020.00117
  • Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. DOI: 10.1016/j.anifeedsci.2015.03.001
  • Hervé, M.K., Calice, M.D., Dzepe, D., Djouaka, R.F., Chia, S.Y., Efole, T., & Ndindeng, S.A. (2025). Black soldier fly (Hermetia illucens) larvae improve growth performance and flesh quality of African catfish (Clarias gariepinus). Discover Animals, 2(1), 9. DOI: 10.1007/s44338-024- 00045-8
  • Hossain, M.S., Small, B.C., & Hardy, R. (2023). Insect lipid in fish nutrition: Recent knowledge and future application in aquaculture. Reviews in Aquaculture, 15(4), 1664-1685. DOI: 10.1111/raq.12810
  • Hu, Z., Xia, M., Wang, G., Jia, L., Ji, H., Sun, J., & Yu, H. (2025). A superior chitin product: Black soldier fly larvae chitin, beneficial to growth performance, muscle quality and health status of largemouth bass Micropterus salmoides, in comparison to shrimp chitin. Aquaculture, 595, 741667. DOI: 10.1016/j.aquaculture.2024.741667
  • Hua, K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture, 530, 735732. DOI: 10.1016/j.aquaculture.2020.735732
  • Islam, S.M.M., Siddik, M.A.B., Sørensen, M., Brinchmann, M.F., Thompson, K.D., Francis, D.S., & Vatsos, I.N. (2024). Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. Fish & Shellfish Immunology, 150, 109625. DOI: 10.1016/j.fsi.2024.109625
  • Jayanegara, A., Gustanti, R., Ridwan, R., & Widyastuti, Y. (2020). Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Italian Journal of Animal Science, 19(1), 1310- 1317. DOI: 10.1080/1828051X.2020.1841571
  • Jeong, S.-M., Khosravi, S., Mauliasari, I.R., Lee, B.-J., You, S.-G., & Lee, S.-M. (2021). Nutritional evaluation of cricket, Gryllus bimaculatus, meal as fish meal substitute for olive flounder, Paralichthys olivaceus, juveniles. Journal of the World Aquaculture Society, 52(4), 859-880. DOI: 10.1111/jwas.12790
  • Karapanagiotidis, I.T., Neofytou, M.C., Asimaki, A., Daskalopoulou, E., Psofakis, P., Mente, E., Rumbos, C.I., & Athanassiou, C.G. (2023). Fishmeal replacement by full-fat and defatted Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). Sustainability, 15(1), 786. DOI: 10.3390/su15010786
  • Kari, Z.A., Téllez-Isaías, G., Abdul Hamid, N.K., Rusli, N.D., Mat, K., Mohamad Sukri, S.A., Anamul Kabir, M., Ishak, A.R., Che Dom, N., Abdel- Warith, A.-W.A., Younis, E.M., Khoo, M.I., Abdullah, F., Shahjahan, M., Rohani, M.F., Davies, S.J., & Wei, L.S. (2023). Effect of fish meal substitution with black soldier fly (Hermetia illucens) on growth performance, feed stability, blood biochemistry, and liver and gut morphology of Siamese fighting fish (Betta splendens). Aquaculture Nutrition, 2023(1), e6676953. DOI: 10.1155/2023/6676953
  • Karlsson, J.O., & Röös, E. (2019). Resource-efficient use of land and animals-Environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy, 85, 63-72. DOI: 10.1016/j.landusepol.2019.03.035
  • Kipkoech, C. (2023). Beyond proteins-Edible insects as a source of dietary fiber. Polysaccharides, 4(2), 116-128. DOI: 10.3390/polysaccharides4020009
  • Kröger, T., Dupont, J., Büsing, L., & Fiebelkorn, F. (2022). Acceptance of insect-based food products in western societies: A Systematic Review. Frontiers in Nutrition, 8. DOI: 10.3389/fnut.2021.759885
  • Lebria, A., Langroudi, H.E., Sajjadi, M., & Pajand, Z.O. (2025). Evaluating full-fat mealworm (Tenebrio molitor) meal as a fishmeal alternative: Impacts on growth, physiology, and enzyme activity in stellate sturgeon (Acipenser stellatus). Aquaculture International, 33(6), 436. DOI: 10.1007/s10499-025-02111-8
  • Li, Y., Gajardo, K., Jaramillo-Torres, A., Kortner, T. M., & Krogdahl, Å. (2022). Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets. Animal Microbiome, 4(1), 8. DOI: 10.1186/s42523-021-00159-4
  • Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.-J., & Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520, 734967. DOI: 10.1016/j.aquaculture.2020.734967
  • Liceaga, A.M. (2022). Chapter Four-Edible insects, a valuable protein source from ancient to modern times. In J. Wu (Ed.), Advances in Food and Nutrition Research (Vol. 101, pp. 129-152). Academic Press. DOI: 10.1016/bs.afnr.2022.04.002
  • Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen, B.E., & Lock, E.-J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLOS ONE, 12(8), e0183188. DOI: 10.1371/journal.pone.0183188
  • Luparelli, A.V., Leni, G., Fuso, A., Pedrazzani, C., Palini, S., Sforza, S., & Caligiani, A. (2023). Development of a quantitative UPLC-ESI/MS method for the simultaneous determination of the chitin and protein content in insects. Food Analytical Methods, 16(2), 252-265. DOI: 10.1007/s12161-022-02411-2
  • Makkar, H.P.S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. DOI: 10.1016/j.anifeedsci.2014.07.008
  • Maroušek, J., Strunecký, O., & Maroušková, A. (2023). Insect rearing on biowaste represents a competitive advantage for fish farming. Reviews in Aquaculture, 15(3), 965-975. DOI: 10.1111/raq.12772
  • Maulu, S., Langi, S., Hasimuna, O. J., Missinhoun, D., Munganga, B. P., Hampuwo, B. M., Gabriel, N. N., Elsabagh, M., Van Doan, H., Kari, Z. A., & Dawood, M. A. O. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition, 11, 334-349. DOI: 10.1016/j.aninu.2022.07.013
  • Meijer, N., Safitri, R.A., Tao, W., & Hoek-Van den Hil, E.F. (2025). Review: European Union legislation and regulatory framework for edible insect production – Safety issues. Animal, 19(1), 101468. DOI: 10.1016/j.animal.2025.101468
  • Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for food: A water footprint perspective. Water, 7(11), 6190. DOI: 10.3390/w7116190
  • Mohan, K., Rajan, D.K., Muralisankar, T., Ganesan, A.R., Sathishkumar, P., & Revathi, N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 553, 738095. DOI: 10.1016/j.aquaculture.2022.738095
  • Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (yellow mealworm Tenebrio molitor) improves the growth and immunity of Pacific white shrimp (Litopenaeus vannamei). Animals, 9(5), 258. DOI: 10.3390/ani9050258
  • Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. DOI: 10.1038/s41586-021-03308-6
  • Ogunji, J.O., Iheanacho, S.C., Mgbabu, C.N., Amaechi, N.C., & Evulobi, O.O.C. (2021). Housefly maggot meal as a potent bioresource for fish feed to facilitate early gonadal development in Clarias gariepinus (Burchell,1822). Sustainability, 13(2), 921. DOI: 10.3390/su13020921
  • Oonincx, D.G.A.B., & Boer, I.J.M. de. (2012). Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. PLOS ONE, 7(12), e51145. DOI: 10.1371/journal.pone.0051145
  • Parmar, T. P., Kindinger, A. L., Mathieu-Resuge, M., Twining, C. W., Shipley, J. R., Kainz, M. J., & Martin-Creuzburg, D. (2022). Fatty acid composition differs between emergent aquatic and terrestrial insects-A detailed single system approach. Frontiers in Ecology and Evolution, 10, 952292. DOI: 10.3389/fevo.2022.952292
  • Pascon, G., Opere Akinyi, R., Cardinaletti, G., Daniso, E., Messina, M., & Tulli, F. (2025). Chitin and its effects when included in aquafeed. Aquaculture International, 33(3), 202. DOI: 10.1007/s10499-025-01879-z
  • Pelletier, N., Klinger, D.H., Sims, N.A., Yoshioka, J.-R., & Kittinger, J.N. (2018). Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade- offs. Environmental Science & Technology, 52(10), 5532-5544. DOI: 10.1021/acs.est.7b05468
  • Perera, G. S. C., & Bhujel, R. C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation, and breeding performances of guppy (Poecilia reticulata). Aquaculture Reports, 25, 101260. DOI: 10.1016/j.aqrep.2022.101260
  • Prachom, N., Yuangsoi, B., Pumnuan, J., Ashour, M., Davies, S.J., & El-Haroun, E. (2023). Effects of substituting the two-spotted cricket (Gryllus bimaculatus) meal for fish meal on growth performances and digestibility of striped snakehead (Channa striata) juveniles. Life, 13(2), 594. DOI: 10.3390/life13020594
  • Rimoldi, S., Ceccotti, C., Brambilla, F., Faccenda, F., Antonini, M., & Terova, G. (2023). Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture, 567, 739256. DOI: 10.1016/j.aquaculture.2023.739256
  • Rimoldi, S., Finzi, G., Ceccotti, C., Girardello, R., Grimaldi, A., Ascione, C., & Terova, G. (2016). Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fisheries and Aquatic Sciences, 19(1), 40. DOI: 10.1186/s41240-016-0041-9
  • Rodrigues, D. P., Calado, R., Pinho, M., Domingues, M. d. R., Vázquez, J. A., & Ameixa, O. M. C. C. (2025). Growth rate prediction, performance, and biochemical enhancement of black soldier fly (Hermetia illucens) fed with marine by-products and co-products: A potential value-added resource for marine aquafeeds. Insects, 16(2), 113. DOI: 10.3390/insects16020113
  • Rose, A.S., Sg, S., Ra, O., So, O., & Ga, A. (2024). Growth effects of replacing fishmeal with housefly (Musca domestica) maggot meal in diet of C. gariepinus fingerlings. International Journal of Oceanography & Aquaculture, 8(4), 1- 16. DOI: 10.23880/ijoac-16000341
  • Rumpold, B.A., & Schlüter, O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. DOI: 10.1016/j.ifset.2012.11.005
  • Sahin, T., & Ergün, S. (2021). Incorporation of rapa whelk (Rapana venosa) meal in diets for rainbow trout (Oncorhynchus mykiss) fry. Aquaculture Research, 52(2), 678-692. DOI: 10.1111/are.14925
  • Sánchez-Muros, M.-J., Barroso, F.G., & Manzano- Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production, 65, 16-27. https://doi.org/10.1016/j.jclepro.2013.11.068
  • Saputra, I., & Lee, Y.N. (2023). Nutrition composition of commercial full-fat and defatted black soldier fly larvae meal (Hermetia illucens) as a potential protein resource for aquafeeds. Biodiversitas Journal of Biological Diversity, 24(9). DOI: 10.13057/biodiv/d240930
  • Shah, S., & St. Jules, M. (2024). Can black soldier fly larvae (BSFL) producers displace fishmeal? Rethink Priorities. Retrieved December 17, 2024, from https://rethinkpriorities.org/research- area/can-black-soldier-fly-larvae-bsfl-producers- displace-fishmeal/
  • Smetana, S., Schmitt, E., & Mathys, A. (2019). Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling, 144, 285-296. DOI: 10.1016/j.resconrec.2019.01.042
  • Smetana, S., Spykman, R., & Heinz, V. (2021). Environmental aspects of insect mass production. Journal of Insects as Food and Feed, 7(5), 553- 572. DOI: 10.3920/JIFF2020.0116
  • Sogari, G., Bellezza Oddon, S., Gasco, L., van Huis, A., Spranghers, T., & Mancini, S. (2023). Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17, 100904. DOI: 10.1016/j.animal.2023.100904
  • St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W., Sheppard, C., & Irving, S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. Journal of the World Aquaculture Society, 38(2), 309-313. DOI: 10.1111/j.1749-7345.2007.00101.x
  • Suryati, T., Julaeha, E., Farabi, K., Ambarsari, H., & Hidayat, A.T. (2023). Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability, 15(13), 10383. DOI: 10.3390/su151310383
  • Tang, J., Dai, Y., Liang, X., Zhang, Y., Huang, F., Lou, B., & Guo, S. (2025). Evaluation of common housefly Musca domestica maggot meal as partial substitution of fish meal and fish oil in Chinese mitten crab Eriocheir sinensis diets. Aquaculture Reports, 41, 102709. DOI: 10.1016/j.aqrep.2025.102709
  • Tariq, M.R., Liu, S., Wang, F., Wang, H., Mo, Q., Zhuang, Z., Zheng, C., Liang, Y., Liu, Y., ur Rehman, K., Helvaci, M., Qin, J., & Li, C. (2025). Black Soldier Fly: A keystone species for the future of sustainable waste management and nutritional resource development: A review. Insects, 16(8), 750. DOI: 10.3390/insects16080750
  • Taufek, N.M., Muin, H., Raji, A.A., Md Yusof, H., Alias, Z., & Razak, S.A. (2018). Potential of field cricket meal (Gryllus bimaculatus) in the diet of African catfish (Clarias gariepinus). Journal of Applied Animal Research, 46(1), 541-546. DOI: 10.1080/09712119.2017.1357560
  • Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 30. DOI: 10.1186/s40104- 021-00551-9
  • Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C., & Gasco, L. (2019). Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Reviews in Fish Biology and Fisheries, 29(2), 465-486. DOI: 10.1007/s11160- 019-09558-y
  • Tippayadara, N., Dawood, M.A.O., Krutmuang, P., Hoseinifar, S.H., Doan, H.V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11(1), 193. DOI: 10.3390/ani11010193
  • Tomberlin, J.K., & van Huis, A. (2020). Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: An historical perspective. Journal of Insects as Food and Feed, 6(1), 1-4. DOI: 10.3920/JIFF2020.0003
  • Tran, G., Heuzé, V., & Makkar, H. P. S. (2015). Insects in fish diets. Animal Frontiers, 5(2), 37-44. DOI: 10.2527/af.2015-0018
  • Tran, Q.H., Prokešová, M., Zare, M., Gebauer, T., Elia, A.C., Colombino, E., Ferrocino, I., Caimi, C., Gai, F., Gasco, L., & Stejskal, V. (2021). How does pikeperch (Sander lucioperca) respond to dietary insect meal (Hermetia illucens)? Investigation on gut microbiota, histomorphology, and antioxidant biomarkers. Frontiers in Marine Science, 8, 680942. DOI: 10.3389/fmars.2021.680942
  • Tran, Q. H., Van Doan, H., & Stejskal, V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Reviews in Aquaculture, 14(1), 237-251. DOI: 10.1111/raq.12595
  • Veldkamp, T., & Gasco, L. (2023). Insects as global opportunity. Animal Frontiers, 13(4), 3-5. DOI: 10.1093/af/vfad034
  • Weththasinghe, P., Lagos, L., Cortés, M., Hansen, J.Ø., & Øverland, M. (2021). Dietary inclusion of black soldier fly (Hermetia illucens) larvae meal and paste improved gut health but had minor effects on skin mucus proteome and immune response in Atlantic salmon (Salmo salar). Frontiers in Immunology, 12, 599530. DOI: 10.3389/fimmu.2021.599530
  • Yan, Y., Zhang, J., Chen, X., & Wang, Z. (2023). Effects of black soldier fly larvae (Hermetia illucens Larvae) meal on the production performance and cecal microbiota of hens. Veterinary Sciences, 10(5), 364. DOI: 10.3390/vetsci10050364
  • Yandi, I., Ozturk, R.C., Terzi, Y., Kayis, S., & Altinok, I. (2023). Effects of chicken waste meal and vegetable substrate fed black soldier fly prepupae meal on rainbow trout (Oncorhynchus mykiss). Journal of Insects as Food and Feed, 9(4), 427- 440. DOI: 10.3920/JIFF2022.0077
  • Zhang, J., Dong, Y., Song, K., Wang, L., Li, X., Tan, B., Lu, K., & Zhang, C. (2022). Effects of the replacement of dietary fish meal with defatted yellow mealworm (Tenebrio molitor) on juvenile large yellow croakers (Larimichthys crocea) growth and gut health. Animals, 12(19), 2659. DOI: 10.3390/ani12192659
  • Zhao, J., Pan, J., Zhang, Z., Chen, Z., Mai, K., & Zhang, Y. (2023). Fishmeal protein replacement by defatted and full-fat black soldier fly larvae meal in juvenile turbot diet: Effects on the growth performance and intestinal microbiota. Aquaculture Nutrition, 2023(1), 8128141. DOI: 10.1155/2023/8128141
  • Zulkifli, N.F.N.M., Seok-Kian, A.Y., Seng, L.L., Mustafa, S., Kim, Y.S., & Shapawi, R. (2022). Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLOS ONE, 17(2), e0263924. DOI: 10.1371/journal.pone.0263924

Akuakültür Yemlerinde Böcek Unu: Tarihsel Gelişim, Güncel Uygulamalar ve Gelecek Perspektifleri

Yıl 2025, Cilt: 10 Sayı: 6, 902 - 912, 30.11.2025
https://doi.org/10.35229/jaes.1768797

Öz

2022 yılında 223 milyon tona ulaşan küresel su ürünleri yetiştiriciliği üretimi, doğal avcılık balıkçılığını geride bırakarak sürdürülemez balık unu kaynaklarına olan bağımlılığı artırmıştır. Böcek unları; yüksek ham protein, dengeli amino asit profilleri ve kitin, laurik asit ile antimikrobiyal peptitler gibi biyoaktif bileşikler sağlayarak sürdürülebilir bir alternatif sunmaktadır. Bu özellikleriyle somon, tilapia ve karides gibi türlerde büyümeyi, bağırsak sağlığını ve bağışıklığı desteklemektedir. Yapılan besleme denemeleri, bazı durumlarda performanstan ödün vermeden %100’e kadar balık unu ikamesi sağlanabildiğini göstermektedir. Tarımsal ve endüstriyel yan ürünlerle yetiştirilen böcek unları, döngüsel ekonomi ilkeleriyle uyumlu olup arazi ve su kullanımını azaltmakta, ayrıca deniz ekosistemleri üzerindeki baskıyı hafifletmektedir. Bununla birlikte, yüksek üretim maliyetleri (3.800–6.000 $/ton), ağır metaller veya kimyasal kalıntılardan kaynaklanan substrat kontaminasyon riskleri ve mevzuattaki farklılıklar önemli zorluklar arasında yer almaktadır. Ancak Avrupa Birliği’nin 2017 tarihli Yönetmeliği (AB 2017/893), su ürünleri yemlerinde çeşitli böcek türlerinin kullanımına izin vererek önemli bir dönüm noktası olmuştur. Gelecekteki araştırma öncelikleri arasında, yetiştirme substratlarının besin profillerine etkilerinin değerlendirilmesi ve böcek unu formülasyonlarının geliştirilmesi yer almaktadır. Bu derleme, su ürünleri yemlerinde böcek unu kullanımının tarihsel gelişimini izlemekte; besinsel faydalarını, uygulama sonuçlarını, ekonomik kısıtlamalarını ve çevresel avantajlarını ele almakta ve sürdürülebilir su ürünleri yetiştiriciliğinde büyük ölçekli benimsemenin hem fırsatlarını hem de zorluklarını vurgulamaktadır.

Kaynakça

  • Abdel-Ghany, H.M., & Salem, M.E.-S. (2020). Effects of dietary chitosan supplementation on farmed fish; a review. Reviews in Aquaculture, 12(1), 438-452. DOI: 10.1111/raq.12326
  • Abdel-Tawwab, M., Khalil, R.H., Metwally, A.A., Shakweer, M.S., Khallaf, M.A., & Abdel-Latif, H.M.R. (2020). Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture, 522, 735136. DOI: 10.1016/j.aquaculture.2020.735136
  • Aguilar-Toalá, J.E., Cruz-Monterrosa, R.G., & Liceaga, A.M. (2022). Beyond human nutrition of edible insects: Health benefits and safety aspects. Insects, 13(11), 1007. DOI: 10.3390/insects13111007
  • Ahmed, F., Soliman, F.M., Adly, M.A., Soliman, H.A.M., El-Matbouli, M., & Saleh, M. (2021). Dietary chitosan nanoparticles: potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial defense and intestinal immunity against enteric redmouth disease. Marine Drugs, 19(2), 72. DOI: 10.3390/md19020072
  • Alofa, C.S., Olodo, I.Y., Chabi Kpéra Orou Nari, M., & Abou, Y. (2023). Effects of the fresh and dried housefly (Musca domestica) larvae in the diets of Nile tilapia Oreochromis niloticus (Linnaeus, 1758): Growth, feed utilization efficiency, body composition and biological indices. Aquatic Research, 6(1), 1-10. DOI: 10.3153/AR23001
  • Alves, A.P. do C., Paulino, R.R., Pereira, R.T., da Costa, D.V., & Rosa, P.V. (2021). Nile tilapia fed insect meal: Growth and innate immune response in different times under lipopolysaccharide challenge. Aquaculture Research, 52(2), 529-540. DOI: 10.1111/are.14911
  • Anany, E.M., Ibrahim, M.A., El-Razek, I.M.A., El- Nabawy, E.-S.M., Amer, A.A., Zaineldin, A.I., Gewaily, M.S., & Dawood, M.A.O. (2025). Combined effects of yellow mealworm (Tenebrio molitor) and Saccharomyces cerevisiae on the growth performance, feed utilization intestinal health, and blood biomarkers of Nile tilapia (Oreochromis niloticus) fed fish meal-free diets. Probiotics and Antimicrobial Proteins, 17(3), 1387-1398. DOI: 10.1007/s12602-023-10199-8
  • Andresen, A.M.S., & Gjøen, T. (2021). Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 40, 100915. DOI: 10.1016/j.cbd.2021.100915
  • Aragão, C., Gonçalves, A.T., Costas, B., Azeredo, R., Xavier, M.J., & Engrola, S. (2022). Alternative proteins for fish diets: Implications beyond growth. Animals, 12(9), 1211. DOI: 10.3390/ani12091211
  • Arru, B., Furesi, R., Gasco, L., Madau, F.A., & Pulina, P. (2019). The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability, 11(6), 1697. DOI: 10.3390/su11061697
  • Auzins, A., Leimane, I., Reissaar, R., Brobakk, J., Sakelaite, I., Grivins, M., & Zihare, L. (2024). Assessing the socio-economic benefits and costs of insect meal as a fishmeal substitute in livestock and aquaculture. Animals, 14(10), 1461. DOI: 10.3390/ani14101461
  • Basto, A., Valente, L.M.P., Sousa, V., Conde-Sieira, M., & Soengas, J.L. (2023). Total fishmeal replacement by defatted Tenebrio molitor larvae meal induces alterations in intermediary metabolism of European sea bass (Dicentrarchus labrax). Journal of Animal Science, 101, skad040. DOI: 10.1093/jas/skad040
  • Biteau, C., Bry-Chevalier, T., Crummett, D., Ryba, R., & Jules, M. St. (2024). Insect-based livestock feeds are unlikely to become economically viable in the near future. Food and Humanity, 3, 100383. DOI: 10.1016/j.foohum.2024.100383
  • Boissat, L. (2025). Sustainability in aquaculture feed: Why insect farming is not the answer [Insight article]. FAIRR Initiative. Retrieved March 26, 2025, from https://www.fairr.org/news- events/insights/sustainability-in-aquaculture- feed-why-insect-farming-is-not-the-answer
  • Bruni, L., Pastorelli, R., Viti, C., Gasco, L., & Parisi, G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487, 56-63. DOI: 10.1016/j.aquaculture.2018.01.006
  • Bruni, L., Randazzo, B., Cardinaletti, G., Zarantoniello, M., Mina, F., Secci, G., Tulli, F., Olivotto, I., & Parisi, G. (2020). Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture, 529, 735678. DOI: 10.1016/j.aquaculture.2020.735678
  • Carvalho, M., Torrecillas, S., Montero, D., Sanmartín, A., Fontanillas, R., Farías, A., Moutou, K., Hernández Velásquez, J., & Izquierdo, M. (2023). Insect and single-cell protein meals as replacers of fish meal in low fish meal and fish oil diets for gilthead sea bream (Sparus aurata) juveniles. Aquaculture, 566, 739215. DOI: 10.1016/j.aquaculture.2022.739215
  • Chang, C.L., Chang, S.C., Lin, L.J., Chang, J.S., Lin, M.J., & Lee, T.T. (2025). Assessment of Hermetia illucens pupal exuviae fermented by Bacillus amyloliquefaciens as functional feed additive for red feather native chickens. Poultry Science, 104(10), 105584. DOI: 10.1016/j.psj.2025.105584
  • Charlton, A.J., Dickinson, M., Wakefield, M.E., Fitches, E., Kenis, M., Han, R., Nogales, B., Overgaard, J., Heckmann, L.H., & Smith, R. (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed, 1(1), 7-16. DOI: 10.3920/JIFF2014.0020
  • Chemello, G., Renna, M., Caimi, C., Guerreiro, I., Oliva-Teles, A., Enes, P., Biasato, I., Schiavone, A., Gai, F., & Gasco, L. (2020). Partially defatted Tenebrio molitor larva meal in diets for grow-out rainbow trout, Oncorhynchus mykiss (Walbaum): Effects on growth performance, diet digestibility and metabolic responses. Animals, 10(2), 229. DOI: 10.3390/ani10020229
  • Chen, H., Yu, J., Ran, X., Wu, J., Chen, Y., Tan, B., & Lin, S. (2023). Effects of yellow mealworm (Tenebrio molitor) on growth performance, hepatic health and digestibility in juvenile largemouth bass (Micropterus salmoides). Animals, 13(8), 1389. DOI: 10.3390/ani13081389
  • Costa-Neto, E.M., & Dunkel, F.V. (2016). Insects as food: History, culture, and modern use around the world. In A. T. Dossey, J. A. Morales-Ramos, & M. G. Rojas (Eds.), Insects as sustainable food ingredients: Production, processing and food applications (pp. 29-60). Academic Press. DOI: 10.1016/B978-0-12-802856-8.00002-8
  • de Jong, J., & Nikolik, G. (2021). No longer crawling: Insect protein to come of age in the 2020s. RaboResearch, Rabobank. Retrieved September 4, 2025, from https://insectfeed.nl/wp- content/uploads/2021/03/Rabobank_No-Longer- Crawling-Insect-Protein-to-Come-of-Age-in-the- 2020s_Feb2021-1.pdf
  • Dong, L., Ariëns, R. M. C., Tomassen, M. M., Wichers, H. J., & Govers, C. (2020). In vitro studies toward the use of chitin as nutraceutical: impact on the intestinal epithelium, macrophages, and microbiota. Molecular Nutrition & Food Research, 64(23), 2000324. DOI: 10.1002/mnfr.202000324
  • European Commission. (2017). Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 and Annexes X, XIV and XV to Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Official Journal of the European Union, L 138, 92–116. Retrieved March 26, 2025, from https://eur- lex.europa.eu/legal-content/EN/TXT/?uri= CELEX:32017R0893
  • Fadl, S.E., El-Gammal, G.A., Abdo, W.S., Barakat, M., Sakr, O.A., Nassef, E., Gad, D.M., & El- Sheshtawy, H.S. (2020). Evaluation of dietary chitosan effects on growth performance, immunity, body composition and histopathology of Nile tilapia (Oreochromis niloticus) as well as the resistance to Streptococcus agalactiae infection. Aquaculture Research, 51(3), 1120- 1132. DOI: 10.1111/are.14458
  • Fan, K., Liu, H., Pei, Z., Brown, P.B., & Huang, Y. (2023). A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile channel catfish. Animal Feed Science and Technology, 295, 115542. DOI: 10.1016/j.anifeedsci.2022.115542
  • Fantatto, R.R., Mota, J., Ligeiro, C., Vieira, I., Guilgur, L.G., Santos, M., & Murta, D. (2024). Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquaculture Reports, 37, 102228. DOI: 10.1016/j.aqrep.2024.102228
  • Fawole, F.J., Shamna, N., Memudu, H.A., Abdullahi, N., Hassaan, M.S., & Gbadamosi, O.K. (2023). Housefly maggot meal complement soybean meal in a fish-free diet for hybrid catfish (Clarias gariepinus ♀ x Heterobranchus longifilis ♂): Effect on growth, body composition, blood biochemistry and antioxidant enzyme activity. Animal Feed Science and Technology, 295, 115543. DOI: 10.1016/j.anifeedsci.2022.115543
  • Fontinha, F., Martins, N., Campos, G., Peres, H., & Oliva-Teles, A. (2024). The effects of short-chain fatty acids in gut immune and oxidative responses of European sea bass (Dicentrarchus labrax): An ex vivo approach. Animals, 14(9), 1360. DOI: 10.3390/ani14091360
  • Food and Agriculture Organization of the United Nations (FAO). (2024). The state of world fisheries and aquaculture 2024: Blue transformation in action. Rome: FAO. DOI: 10.4060/cd0683en
  • Franco, A., Scieuzo, C., Salvia, R., Petrone, A.M., Tafi, E., Moretta, A., Schmitt, E., & Falabella, P. (2021). Lipids from Hermetia illucens, an innovative and sustainable source. Sustainability, 13(18), 10198. DOI: 10.3390/su131810198
  • Gasco, L., Finke, M., & van Huis, A. (2018). Can diets containing insects promote animal health? Journal of Insects as Food and Feed, 4(1), 1–4. DOI: 10.3920/JIFF2018.x001
  • Gopalakannan, A., & Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255(1), 179-187. DOI: 10.1016/j.aquaculture.2006.01.012
  • Hameed, A., Majeed, W., Naveed, M., Ramzan, U., Bordiga, M., Hameed, M., Ur Rehman, S., & Rana, N. (2022). Success of aquaculture industry with new insights of using insects as feed: A review. Fishes, 7(6), 395. DOI: 10.3390/fishes7060395
  • Hanan, M.Y., Amatul-Samahah, Md. A., Jaapar, M.Z., & Mohamad, S.N. (2022). The effects of field cricket (Gryllus bimaculatus) meal substitution on growth performance and feed utilization of hybrid red tilapia (Oreochromis spp.). Applied Food Research, 2(1), 100070. DOI: 10.1016/j.afres.2022.100070
  • Hasan, I., Gai, F., Cirrincione, S., Rimoldi, S., Saroglia, G., & Terova, G. (2023). Chitinase and insect meal in aquaculture nutrition: a comprehensive overview of the latest achievements. Fishes, 8(12). DOI: 10.3390/fishes8120607
  • Hashizume, A., Ido, A., Ohta, T., Thiaw, S.T., Morita, R., Nishikawa, M., Takahashi, T., & Miura, T. (2019). Housefly (Musca domestica) larvae preparations after removing the hydrophobic fraction are effective alternatives to fish meal in aquaculture feed for red seabream (Pagrus major). Fishes, 4(3), 38. DOI: 10.3390/fishes4030038
  • Henriques, B.S., Garcia, E.S., Azambuja, P., & Genta, F.A. (2020). Determination of chitin content in insects: An alternate method based on calcofluor staining. Frontiers in Physiology, 11, 117. DOI: 10.3389/fphys.2020.00117
  • Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. DOI: 10.1016/j.anifeedsci.2015.03.001
  • Hervé, M.K., Calice, M.D., Dzepe, D., Djouaka, R.F., Chia, S.Y., Efole, T., & Ndindeng, S.A. (2025). Black soldier fly (Hermetia illucens) larvae improve growth performance and flesh quality of African catfish (Clarias gariepinus). Discover Animals, 2(1), 9. DOI: 10.1007/s44338-024- 00045-8
  • Hossain, M.S., Small, B.C., & Hardy, R. (2023). Insect lipid in fish nutrition: Recent knowledge and future application in aquaculture. Reviews in Aquaculture, 15(4), 1664-1685. DOI: 10.1111/raq.12810
  • Hu, Z., Xia, M., Wang, G., Jia, L., Ji, H., Sun, J., & Yu, H. (2025). A superior chitin product: Black soldier fly larvae chitin, beneficial to growth performance, muscle quality and health status of largemouth bass Micropterus salmoides, in comparison to shrimp chitin. Aquaculture, 595, 741667. DOI: 10.1016/j.aquaculture.2024.741667
  • Hua, K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture, 530, 735732. DOI: 10.1016/j.aquaculture.2020.735732
  • Islam, S.M.M., Siddik, M.A.B., Sørensen, M., Brinchmann, M.F., Thompson, K.D., Francis, D.S., & Vatsos, I.N. (2024). Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. Fish & Shellfish Immunology, 150, 109625. DOI: 10.1016/j.fsi.2024.109625
  • Jayanegara, A., Gustanti, R., Ridwan, R., & Widyastuti, Y. (2020). Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Italian Journal of Animal Science, 19(1), 1310- 1317. DOI: 10.1080/1828051X.2020.1841571
  • Jeong, S.-M., Khosravi, S., Mauliasari, I.R., Lee, B.-J., You, S.-G., & Lee, S.-M. (2021). Nutritional evaluation of cricket, Gryllus bimaculatus, meal as fish meal substitute for olive flounder, Paralichthys olivaceus, juveniles. Journal of the World Aquaculture Society, 52(4), 859-880. DOI: 10.1111/jwas.12790
  • Karapanagiotidis, I.T., Neofytou, M.C., Asimaki, A., Daskalopoulou, E., Psofakis, P., Mente, E., Rumbos, C.I., & Athanassiou, C.G. (2023). Fishmeal replacement by full-fat and defatted Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). Sustainability, 15(1), 786. DOI: 10.3390/su15010786
  • Kari, Z.A., Téllez-Isaías, G., Abdul Hamid, N.K., Rusli, N.D., Mat, K., Mohamad Sukri, S.A., Anamul Kabir, M., Ishak, A.R., Che Dom, N., Abdel- Warith, A.-W.A., Younis, E.M., Khoo, M.I., Abdullah, F., Shahjahan, M., Rohani, M.F., Davies, S.J., & Wei, L.S. (2023). Effect of fish meal substitution with black soldier fly (Hermetia illucens) on growth performance, feed stability, blood biochemistry, and liver and gut morphology of Siamese fighting fish (Betta splendens). Aquaculture Nutrition, 2023(1), e6676953. DOI: 10.1155/2023/6676953
  • Karlsson, J.O., & Röös, E. (2019). Resource-efficient use of land and animals-Environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy, 85, 63-72. DOI: 10.1016/j.landusepol.2019.03.035
  • Kipkoech, C. (2023). Beyond proteins-Edible insects as a source of dietary fiber. Polysaccharides, 4(2), 116-128. DOI: 10.3390/polysaccharides4020009
  • Kröger, T., Dupont, J., Büsing, L., & Fiebelkorn, F. (2022). Acceptance of insect-based food products in western societies: A Systematic Review. Frontiers in Nutrition, 8. DOI: 10.3389/fnut.2021.759885
  • Lebria, A., Langroudi, H.E., Sajjadi, M., & Pajand, Z.O. (2025). Evaluating full-fat mealworm (Tenebrio molitor) meal as a fishmeal alternative: Impacts on growth, physiology, and enzyme activity in stellate sturgeon (Acipenser stellatus). Aquaculture International, 33(6), 436. DOI: 10.1007/s10499-025-02111-8
  • Li, Y., Gajardo, K., Jaramillo-Torres, A., Kortner, T. M., & Krogdahl, Å. (2022). Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets. Animal Microbiome, 4(1), 8. DOI: 10.1186/s42523-021-00159-4
  • Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.-J., & Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520, 734967. DOI: 10.1016/j.aquaculture.2020.734967
  • Liceaga, A.M. (2022). Chapter Four-Edible insects, a valuable protein source from ancient to modern times. In J. Wu (Ed.), Advances in Food and Nutrition Research (Vol. 101, pp. 129-152). Academic Press. DOI: 10.1016/bs.afnr.2022.04.002
  • Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen, B.E., & Lock, E.-J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLOS ONE, 12(8), e0183188. DOI: 10.1371/journal.pone.0183188
  • Luparelli, A.V., Leni, G., Fuso, A., Pedrazzani, C., Palini, S., Sforza, S., & Caligiani, A. (2023). Development of a quantitative UPLC-ESI/MS method for the simultaneous determination of the chitin and protein content in insects. Food Analytical Methods, 16(2), 252-265. DOI: 10.1007/s12161-022-02411-2
  • Makkar, H.P.S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. DOI: 10.1016/j.anifeedsci.2014.07.008
  • Maroušek, J., Strunecký, O., & Maroušková, A. (2023). Insect rearing on biowaste represents a competitive advantage for fish farming. Reviews in Aquaculture, 15(3), 965-975. DOI: 10.1111/raq.12772
  • Maulu, S., Langi, S., Hasimuna, O. J., Missinhoun, D., Munganga, B. P., Hampuwo, B. M., Gabriel, N. N., Elsabagh, M., Van Doan, H., Kari, Z. A., & Dawood, M. A. O. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition, 11, 334-349. DOI: 10.1016/j.aninu.2022.07.013
  • Meijer, N., Safitri, R.A., Tao, W., & Hoek-Van den Hil, E.F. (2025). Review: European Union legislation and regulatory framework for edible insect production – Safety issues. Animal, 19(1), 101468. DOI: 10.1016/j.animal.2025.101468
  • Miglietta, P. P., De Leo, F., Ruberti, M., & Massari, S. (2015). Mealworms for food: A water footprint perspective. Water, 7(11), 6190. DOI: 10.3390/w7116190
  • Mohan, K., Rajan, D.K., Muralisankar, T., Ganesan, A.R., Sathishkumar, P., & Revathi, N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 553, 738095. DOI: 10.1016/j.aquaculture.2022.738095
  • Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (yellow mealworm Tenebrio molitor) improves the growth and immunity of Pacific white shrimp (Litopenaeus vannamei). Animals, 9(5), 258. DOI: 10.3390/ani9050258
  • Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551-563. DOI: 10.1038/s41586-021-03308-6
  • Ogunji, J.O., Iheanacho, S.C., Mgbabu, C.N., Amaechi, N.C., & Evulobi, O.O.C. (2021). Housefly maggot meal as a potent bioresource for fish feed to facilitate early gonadal development in Clarias gariepinus (Burchell,1822). Sustainability, 13(2), 921. DOI: 10.3390/su13020921
  • Oonincx, D.G.A.B., & Boer, I.J.M. de. (2012). Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. PLOS ONE, 7(12), e51145. DOI: 10.1371/journal.pone.0051145
  • Parmar, T. P., Kindinger, A. L., Mathieu-Resuge, M., Twining, C. W., Shipley, J. R., Kainz, M. J., & Martin-Creuzburg, D. (2022). Fatty acid composition differs between emergent aquatic and terrestrial insects-A detailed single system approach. Frontiers in Ecology and Evolution, 10, 952292. DOI: 10.3389/fevo.2022.952292
  • Pascon, G., Opere Akinyi, R., Cardinaletti, G., Daniso, E., Messina, M., & Tulli, F. (2025). Chitin and its effects when included in aquafeed. Aquaculture International, 33(3), 202. DOI: 10.1007/s10499-025-01879-z
  • Pelletier, N., Klinger, D.H., Sims, N.A., Yoshioka, J.-R., & Kittinger, J.N. (2018). Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade- offs. Environmental Science & Technology, 52(10), 5532-5544. DOI: 10.1021/acs.est.7b05468
  • Perera, G. S. C., & Bhujel, R. C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation, and breeding performances of guppy (Poecilia reticulata). Aquaculture Reports, 25, 101260. DOI: 10.1016/j.aqrep.2022.101260
  • Prachom, N., Yuangsoi, B., Pumnuan, J., Ashour, M., Davies, S.J., & El-Haroun, E. (2023). Effects of substituting the two-spotted cricket (Gryllus bimaculatus) meal for fish meal on growth performances and digestibility of striped snakehead (Channa striata) juveniles. Life, 13(2), 594. DOI: 10.3390/life13020594
  • Rimoldi, S., Ceccotti, C., Brambilla, F., Faccenda, F., Antonini, M., & Terova, G. (2023). Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture, 567, 739256. DOI: 10.1016/j.aquaculture.2023.739256
  • Rimoldi, S., Finzi, G., Ceccotti, C., Girardello, R., Grimaldi, A., Ascione, C., & Terova, G. (2016). Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fisheries and Aquatic Sciences, 19(1), 40. DOI: 10.1186/s41240-016-0041-9
  • Rodrigues, D. P., Calado, R., Pinho, M., Domingues, M. d. R., Vázquez, J. A., & Ameixa, O. M. C. C. (2025). Growth rate prediction, performance, and biochemical enhancement of black soldier fly (Hermetia illucens) fed with marine by-products and co-products: A potential value-added resource for marine aquafeeds. Insects, 16(2), 113. DOI: 10.3390/insects16020113
  • Rose, A.S., Sg, S., Ra, O., So, O., & Ga, A. (2024). Growth effects of replacing fishmeal with housefly (Musca domestica) maggot meal in diet of C. gariepinus fingerlings. International Journal of Oceanography & Aquaculture, 8(4), 1- 16. DOI: 10.23880/ijoac-16000341
  • Rumpold, B.A., & Schlüter, O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. DOI: 10.1016/j.ifset.2012.11.005
  • Sahin, T., & Ergün, S. (2021). Incorporation of rapa whelk (Rapana venosa) meal in diets for rainbow trout (Oncorhynchus mykiss) fry. Aquaculture Research, 52(2), 678-692. DOI: 10.1111/are.14925
  • Sánchez-Muros, M.-J., Barroso, F.G., & Manzano- Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production, 65, 16-27. https://doi.org/10.1016/j.jclepro.2013.11.068
  • Saputra, I., & Lee, Y.N. (2023). Nutrition composition of commercial full-fat and defatted black soldier fly larvae meal (Hermetia illucens) as a potential protein resource for aquafeeds. Biodiversitas Journal of Biological Diversity, 24(9). DOI: 10.13057/biodiv/d240930
  • Shah, S., & St. Jules, M. (2024). Can black soldier fly larvae (BSFL) producers displace fishmeal? Rethink Priorities. Retrieved December 17, 2024, from https://rethinkpriorities.org/research- area/can-black-soldier-fly-larvae-bsfl-producers- displace-fishmeal/
  • Smetana, S., Schmitt, E., & Mathys, A. (2019). Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling, 144, 285-296. DOI: 10.1016/j.resconrec.2019.01.042
  • Smetana, S., Spykman, R., & Heinz, V. (2021). Environmental aspects of insect mass production. Journal of Insects as Food and Feed, 7(5), 553- 572. DOI: 10.3920/JIFF2020.0116
  • Sogari, G., Bellezza Oddon, S., Gasco, L., van Huis, A., Spranghers, T., & Mancini, S. (2023). Review: Recent advances in insect-based feeds: from animal farming to the acceptance of consumers and stakeholders. Animal, 17, 100904. DOI: 10.1016/j.animal.2023.100904
  • St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W., Sheppard, C., & Irving, S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. Journal of the World Aquaculture Society, 38(2), 309-313. DOI: 10.1111/j.1749-7345.2007.00101.x
  • Suryati, T., Julaeha, E., Farabi, K., Ambarsari, H., & Hidayat, A.T. (2023). Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability, 15(13), 10383. DOI: 10.3390/su151310383
  • Tang, J., Dai, Y., Liang, X., Zhang, Y., Huang, F., Lou, B., & Guo, S. (2025). Evaluation of common housefly Musca domestica maggot meal as partial substitution of fish meal and fish oil in Chinese mitten crab Eriocheir sinensis diets. Aquaculture Reports, 41, 102709. DOI: 10.1016/j.aqrep.2025.102709
  • Tariq, M.R., Liu, S., Wang, F., Wang, H., Mo, Q., Zhuang, Z., Zheng, C., Liang, Y., Liu, Y., ur Rehman, K., Helvaci, M., Qin, J., & Li, C. (2025). Black Soldier Fly: A keystone species for the future of sustainable waste management and nutritional resource development: A review. Insects, 16(8), 750. DOI: 10.3390/insects16080750
  • Taufek, N.M., Muin, H., Raji, A.A., Md Yusof, H., Alias, Z., & Razak, S.A. (2018). Potential of field cricket meal (Gryllus bimaculatus) in the diet of African catfish (Clarias gariepinus). Journal of Applied Animal Research, 46(1), 541-546. DOI: 10.1080/09712119.2017.1357560
  • Terova, G., Gini, E., Gasco, L., Moroni, F., Antonini, M., & Rimoldi, S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. Journal of Animal Science and Biotechnology, 12(1), 30. DOI: 10.1186/s40104- 021-00551-9
  • Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C., & Gasco, L. (2019). Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia illucens prepupae in the diet. Reviews in Fish Biology and Fisheries, 29(2), 465-486. DOI: 10.1007/s11160- 019-09558-y
  • Tippayadara, N., Dawood, M.A.O., Krutmuang, P., Hoseinifar, S.H., Doan, H.V., & Paolucci, M. (2021). Replacement of fish meal by black soldier fly (Hermetia illucens) larvae meal: effects on growth, haematology, and skin mucus immunity of Nile tilapia, Oreochromis niloticus. Animals, 11(1), 193. DOI: 10.3390/ani11010193
  • Tomberlin, J.K., & van Huis, A. (2020). Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: An historical perspective. Journal of Insects as Food and Feed, 6(1), 1-4. DOI: 10.3920/JIFF2020.0003
  • Tran, G., Heuzé, V., & Makkar, H. P. S. (2015). Insects in fish diets. Animal Frontiers, 5(2), 37-44. DOI: 10.2527/af.2015-0018
  • Tran, Q.H., Prokešová, M., Zare, M., Gebauer, T., Elia, A.C., Colombino, E., Ferrocino, I., Caimi, C., Gai, F., Gasco, L., & Stejskal, V. (2021). How does pikeperch (Sander lucioperca) respond to dietary insect meal (Hermetia illucens)? Investigation on gut microbiota, histomorphology, and antioxidant biomarkers. Frontiers in Marine Science, 8, 680942. DOI: 10.3389/fmars.2021.680942
  • Tran, Q. H., Van Doan, H., & Stejskal, V. (2022). Environmental consequences of using insect meal as an ingredient in aquafeeds: A systematic view. Reviews in Aquaculture, 14(1), 237-251. DOI: 10.1111/raq.12595
  • Veldkamp, T., & Gasco, L. (2023). Insects as global opportunity. Animal Frontiers, 13(4), 3-5. DOI: 10.1093/af/vfad034
  • Weththasinghe, P., Lagos, L., Cortés, M., Hansen, J.Ø., & Øverland, M. (2021). Dietary inclusion of black soldier fly (Hermetia illucens) larvae meal and paste improved gut health but had minor effects on skin mucus proteome and immune response in Atlantic salmon (Salmo salar). Frontiers in Immunology, 12, 599530. DOI: 10.3389/fimmu.2021.599530
  • Yan, Y., Zhang, J., Chen, X., & Wang, Z. (2023). Effects of black soldier fly larvae (Hermetia illucens Larvae) meal on the production performance and cecal microbiota of hens. Veterinary Sciences, 10(5), 364. DOI: 10.3390/vetsci10050364
  • Yandi, I., Ozturk, R.C., Terzi, Y., Kayis, S., & Altinok, I. (2023). Effects of chicken waste meal and vegetable substrate fed black soldier fly prepupae meal on rainbow trout (Oncorhynchus mykiss). Journal of Insects as Food and Feed, 9(4), 427- 440. DOI: 10.3920/JIFF2022.0077
  • Zhang, J., Dong, Y., Song, K., Wang, L., Li, X., Tan, B., Lu, K., & Zhang, C. (2022). Effects of the replacement of dietary fish meal with defatted yellow mealworm (Tenebrio molitor) on juvenile large yellow croakers (Larimichthys crocea) growth and gut health. Animals, 12(19), 2659. DOI: 10.3390/ani12192659
  • Zhao, J., Pan, J., Zhang, Z., Chen, Z., Mai, K., & Zhang, Y. (2023). Fishmeal protein replacement by defatted and full-fat black soldier fly larvae meal in juvenile turbot diet: Effects on the growth performance and intestinal microbiota. Aquaculture Nutrition, 2023(1), 8128141. DOI: 10.1155/2023/8128141
  • Zulkifli, N.F.N.M., Seok-Kian, A.Y., Seng, L.L., Mustafa, S., Kim, Y.S., & Shapawi, R. (2022). Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLOS ONE, 17(2), e0263924. DOI: 10.1371/journal.pone.0263924
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balık Yetiştiriciliği
Bölüm Derleme
Yazarlar

Tolga Şahin 0000-0001-8232-3126

Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 5 Kasım 2025
Erken Görünüm Tarihi 30 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 6

Kaynak Göster

APA Şahin, T. (2025). Insect Meal in Aquaculture Feeds-Historical Development, Current Applications, and Future Perspectives. Journal of Anatolian Environmental and Animal Sciences, 10(6), 902-912. https://doi.org/10.35229/jaes.1768797