Araştırma Makalesi
BibTex RIS Kaynak Göster

Akarsulardaki Bakteriyolojik Su Kalitesinin Uzamsal-Zamansal Değerlendirmesi: Sansür Duyarlı Entegre Bir Yaklaşım (Harşit Çayı, Türkiye)

Yıl 2025, Cilt: 10 Sayı: 6, 913 - 922, 30.11.2025
https://doi.org/10.35229/jaes.1793470

Öz

Bu çalışma akarsulardaki bakteriyolojik kaliteyi değerlendirmek için tekrar üretilebilir, entegre bir çerçeve sunmaktadır. Sansür duyarlı Kaplan–Meier (KM) özetleri ile eşik olay yaklaşımını entegre ederek parametrik olmayan istatistiksel yöntemlerle uzamsal farklılıkları ve zamansal eğilimleri nicelleştirir. Bu amaç için Harşit Çayı’nın (Giresun, Türkiye) yedi farklı bölgesinden aylık yüzey suyu örnekleri steril koşullar altında toplanmış ve soğuk zincir protokolü kapsamında laboratuvara taşınmıştır. Su örneklerinin toplam koliform (TC), fekal koliform (FC), Escherichia coli (EC) ve fekal streptokok (FS) sayımları (MPN/100mL) bakteriyolojik kalitenin göstergeleri olarak kullanılmıştır. Bulgular, sağ sansürleme dikkate alınarak tanımlayıcı istatistikler ve KM özetleri kullanılarak incelenmiştir. Ayrıca, istasyon farklılıkları ve ilişkileri test edilmiştir. Dahası, çok değişkenli yapı ve kalite eğilimleri istatistiksel analizler kullanılarak değerlendirilmiştir. Bakteriyolojik kalite değerlendirmesi ulusal ve uluslararası kılavuzlara göre de yapılmıştır. Çalışmada KM özetleri, üst sınırda kümelenme nedeniyle sansürlemeye etkisini doğrulamıştır. Parametreler arasında geniş kapsamlı pozitif ve güçlü ilişkiler tespit edilmiştir (p<0,001). Tüm bakteriyel göstergelerde ortak bir gradyan tespit edilmiştir. Zaman içindeki eğilim, sadece İstasyon 2'de bir azalma göstermiştir. Ayrıca, istasyonlar açıkça yüksek yük (istasyonlar 6-7), düşük yük (istasyonlar 1-3) ve orta yük (istasyonlar 4-5; 2 daha yüksek ayrımla) kümelerine sınıflandırılmıştır. Sonuç olarak, KM tabanlı sansür duyarlı özetler ve eşik olay analizi bakteriyolojik akarsu verilerindeki sansürü bütüncül biçimde yönetmektedir. Bu sayede, karar vericiler ikameye dayalı yanlılıktan arındırılmış, eşik aşımı ne kadar sürede olacağını gösteren net risk göstergeleri görerek sürdürülebilir havza yönetiminde hızlı ve adil müdahaleleri kolayca gerçekleştirebilecektir. Bu uygulama, Türkiye’de akarsu bakteriyolojisine yönelik ilk sistematik KM uygulamalarından biridir ve farklı havzalara uygulanabilme potansiyeli taşımaktadır.

Proje Numarası

BAP-C-250414-02

Kaynakça

  • Ahıskalı, A., Akkan, T., & Baş, E. (2025). Evaluation of a new approach in water quality assessments using the modified VIKOR method. Environmental Modeling & Assessment, 30(3), 613-623. DOI: 10.1007/s10666-025-10020-6
  • Ahmed, S.F., Kumar, P.S., Kabir, M., Zuhara, F.T., Mehjabin, A., Tasannum, N., …, & Mofijur, M. (2022). Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environmental Research, 214(Pt 1), 113808. DOI: 10.1016/j.envres.2022.113808
  • Akkan, B.E. (2017). A research on the determination of water and sediment quality in Harşit Stream (Giresun). PhD Thesis, Giresun Univsersity, Institute of Natural and Applied Sciences, Giresun, Türkiye.
  • Akkan, T. (2017). An assessment of linear alkylbenzene sulfonate (LAS) pollution in Harşit Stream, Giresun, Turkey. Fresenius Environmental Bulletin, 26(5), 3217-3221.
  • Akkan, T., & Çolaker, F. (2020). Determining the level of bacteriological pollution in Gelevera Creek, Giresun. Journal of Anatolian Environmental and Animal Sciences, 5(4), 691-695. DOI: 10.35229/jaes.818132
  • Akkan, T., Mehel, S., & Mutlu, C. (2019). Determining the level of bacteriological pollution in Yağlıdere Stream, Giresun. LimnoFish, 5(2), 83-88. DOI: 10.17216/LimnoFish.450722
  • Akyel, Ö. (2007). Su Havzası Yönetim Sistemi ve Kırıkkale Havzasının İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara.
  • Alver, D.O., Işık, H., Palabıyık, S., Akkan, B.E., & Akkan, T. (2025). pH acidification in the Red Sea: A machine learning-based validation study. Journal of Sea Research, 207, 102613. DOI: 10.1016/j.seares.2025.102613
  • APHA, AWWA, WPCF. (1995). Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington, DC.
  • APHA. (1992). Microbial Examination. In Standard Methods for the Examination of Water and Wastewater (18th ed., Greenberg AE, Clesceri LS, Eaton AD, Eds., pp. 9.1-9.147). American Public Health Association, Washington, DC.
  • Aydın Uncumusaoğlu, A., & Akkan, T. (2017). Assessment of water quality of Yağlıdere Stream (Turkey) using multivariate statistical techniques. Polish Journal of Environmental Studies, 26(4), 1715-1723. DOI: 10.15244/pjoes/68952
  • Balcı, R.S. (2007). Seyhan Baraj Gölünün Bakteriyolojik Kirlilik Düzeyinin Belirlenmesi ve Enterobacteriaceae Üyelerinde Antibiyotik Dirençliliği. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana.
  • Banseka, Y.J., & Tume, S.J.P. (2024). Coliform bacteria contamination of water resources and implications on public health in Fako Division, South West Region, Cameroon. Advances in Environmental Engineering Research, 5(2), 010. DOI: 10.21926/aeer.2402010
  • Chavarria, K., Batista, J., & Saltonstall, K. (2024). Widespread occurrence of fecal indicator bacteria in oligotrophic tropical streams: Are common culture-based coliform tests appropriate? PeerJ, 12, e18007. DOI: 10.7717/peerj.18007
  • Diwyanjalee, G.R., Bellanthudawa, B.K.A., De Silva, D.K.N.S., & Gunawardena, A.R. (2024). Biodegradability index (BDI) as an indicator for effluents quality measurement: A case study based on different industry sectors in Matara District, Sri Lanka. Water Practice & Technology, 19(8), 3092-3108. DOI: 10.2166/wpt.2024.183
  • Dudgeon, D., & Strayer, D.L. (2025). Bending the curve of global freshwater biodiversity loss: What are the prospects? Biological Reviews, 100(1), 205- 226. DOI: 10.1111/brv.13137
  • IPCC (Intergovernmental Panel on Climate Change). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. DOI: 10.1017/9781009325844
  • Işık, H., & Akkan, T. (2025). Water quality assessment with artificial neural network models: Performance comparison between SMN, MLP and PS-ANN methodologies. Arabian Journal for Science and Engineering, 50(1), 369-387. DOI: 10.1007/s13369-024-09238-5
  • Işık, H., Baş, E., Egrioğlu, E., & Akkan, T. (2024). A new single multiplicative neuron model artificial neural network based on black hole optimization algorithm: Forecasting the amounts of clean water given to metropolis. Stochastic Environmental Research and Risk Assessment, 38(11), 4259- 4274. DOI: 10.1007/s00477-024-02802-3
  • Madden, R.H., & Gilmour, A.A. (1995). Impedance as an alternative to MPN enumeration of coliforms in pasteurized milks. Letters in Applied Microbiology, 21(6), 387-388. DOI: 10.1111/j.1472-765X.1995.tb01088.x
  • Oelsner, G.P., Sprague, L.A., Murphy, J.C., Zuellig, R.E., Johnson, H.M., Ryberg, K.R., …, & Farmer, W.H. (2017). Water-quality trends in the Nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results (ver. 2.0). U.S. Geological Survey Scientific Investigations Report, 2017-5006. DOI: 10.3133/sir20175006
  • Onifade, O., Lawal, Z.K., Shamsuddin, N., Abas, P.E., Lai, D.T.C., & Gödeke, S.H. (2025). Impact of seasonal variation and population growth on coliform bacteria concentrations in the Brunei River: A temporal analysis with future projection. Water, 17, 1069. DOI: 10.3390/w17071069
  • Orr, J.A., Piggott, J.J., Atalah, J., Ladle, R.J., Townsend, C.R., & Matthaei, C.D. (2024). Interacting anthropogenic stressors in freshwaters: A systematic review. Ecology Letters, 27(10), e14463. DOI: 10.1111/ele.14463
  • Palabıyık, S., & Akkan, T. (2024). Evaluation of water quality based on artificial intelligence: Performance of multilayer perceptron neural networks and multiple linear regression versus water quality indexes. Environment, Development and Sustainability, (2024), 1-24. DOI: 10.1007/s10668-024-05075-6
  • Saunders, M.N.K., Lewis, P., & Thornhill, A. (2019). Research methods for business students (8th ed.). Pearson.
  • Sayer, C.A., Fernando, E., Jimenez, R.R., et al. (2025). One-quarter of freshwater fauna threatened with extinction. Nature, 638(8049), 138-145. DOI: 10.1038/s41586-024-08375-z
  • Sghiouer, F.E., Nahli, A., Bouka, H., & Chlaida, M. (2024). Assessment of the bacteriological and physicochemical water quality of the Inaouene and Larbaa Rivers (Taza, Morocco). Asian Journal of Water, Environment and Pollution, 21(6), 249-259. DOI: 10.3233/AJW240093
  • Shoda, M.E., & Murphy, J.C. (2022). Water-quality trends in the Delaware River Basin calculated using multisource data and two methods for trend periods ending in 2018. U.S. Geological Survey Scientific Investigations Report, 2022-5097. https://doi.org/10.3133/sir20225097
  • Streiner, D.L., Norman, G.R., & Cairney, J. (2015). Health measurement scales: A practical guide to their development and use (5th ed.). Oxford University Press. DOI: 10.1093/med/9780199685219.001.0001
  • Tickner, D., Opperman, J.J., Abell, R., Acreman, M., Arthington, A.H., Bunn, S.E., …, & Young, L. (2020). Bending the curve of freshwater biodiversity loss: An emergency recovery plan. BioScience, 70(4), 330-342. DOI: 10.1093/biosci/biaa002
  • UNESCO (on behalf of UN-Water). (2024). UN World Water Development Report 2024: Water for Prosperity and Peace. UNESCO.
  • Zar, J.H. (2010). Biostatistical analysis (5th ed.). Prentice Hall (Pearson).

Spatiotemporal Assessment of Bacteriological Water Quality in Rivers: A Censoring-Aware Integrated Approach (Harşit Stream, Türkiye)

Yıl 2025, Cilt: 10 Sayı: 6, 913 - 922, 30.11.2025
https://doi.org/10.35229/jaes.1793470

Öz

This paper presents an integrated, reproducible framework for assessing bacteriological quality in rivers. The aim is to quantify spatial variation and temporal trends with non-parametric statistics using censored Kaplan-Meier (KM) summaries and a threshold event approach. For this purpose, monthly surface water samples were collected under sterile conditions at seven stations on the Harşit Stream (Giresun, Türkiye), and transported to the laboratory under a cold chain protocol. Total coliform (TC), Fecal coliform (FC), Escherichia coli (EC), and fecal Streptococci (FS) counts (MPN/100mL) were used as indicators of bacteriological quality. Findings were examined using descriptive statistics and Kaplan–Meier summaries, considering right censoring. Furthermore, station differences and relationships were tested. Moreover, multivariate structure and quality trends were evaluated using statistical analyses. Furthermore, bacteriological quality assessment was performed according to national and international guidance. This study verified the effect of KM summaries on censoring due to clustering at the upper limit. Wide-ranging positive and strong relationships were detected between parameters (p<0.001). A common gradient was detected in all bacterial indicators. The trend over time showed a decrease only at Station 2. Furthermore, the stations are clearly classified into high load (stations 6–7), low load (stations 1–3), and intermediate load (stations 4–5; with 2 higher distinctions) clusters. In conclusion, KM-based censoring of sensitive summaries and threshold event analysis comprehensively manage censoring in bacteriological stream data. In this way, decision makers will realize the risk indicators that show how long it will take to exceed the threshold free from substitution-based bias. This will facilitate rapid and equitable interventions in sustainable basin management. This application is one of the first systematic KM applications for river bacteriology in Türkiye and has the potential to be applied to different watersheds.

Destekleyen Kurum

Giresun University

Proje Numarası

BAP-C-250414-02

Kaynakça

  • Ahıskalı, A., Akkan, T., & Baş, E. (2025). Evaluation of a new approach in water quality assessments using the modified VIKOR method. Environmental Modeling & Assessment, 30(3), 613-623. DOI: 10.1007/s10666-025-10020-6
  • Ahmed, S.F., Kumar, P.S., Kabir, M., Zuhara, F.T., Mehjabin, A., Tasannum, N., …, & Mofijur, M. (2022). Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environmental Research, 214(Pt 1), 113808. DOI: 10.1016/j.envres.2022.113808
  • Akkan, B.E. (2017). A research on the determination of water and sediment quality in Harşit Stream (Giresun). PhD Thesis, Giresun Univsersity, Institute of Natural and Applied Sciences, Giresun, Türkiye.
  • Akkan, T. (2017). An assessment of linear alkylbenzene sulfonate (LAS) pollution in Harşit Stream, Giresun, Turkey. Fresenius Environmental Bulletin, 26(5), 3217-3221.
  • Akkan, T., & Çolaker, F. (2020). Determining the level of bacteriological pollution in Gelevera Creek, Giresun. Journal of Anatolian Environmental and Animal Sciences, 5(4), 691-695. DOI: 10.35229/jaes.818132
  • Akkan, T., Mehel, S., & Mutlu, C. (2019). Determining the level of bacteriological pollution in Yağlıdere Stream, Giresun. LimnoFish, 5(2), 83-88. DOI: 10.17216/LimnoFish.450722
  • Akyel, Ö. (2007). Su Havzası Yönetim Sistemi ve Kırıkkale Havzasının İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara.
  • Alver, D.O., Işık, H., Palabıyık, S., Akkan, B.E., & Akkan, T. (2025). pH acidification in the Red Sea: A machine learning-based validation study. Journal of Sea Research, 207, 102613. DOI: 10.1016/j.seares.2025.102613
  • APHA, AWWA, WPCF. (1995). Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington, DC.
  • APHA. (1992). Microbial Examination. In Standard Methods for the Examination of Water and Wastewater (18th ed., Greenberg AE, Clesceri LS, Eaton AD, Eds., pp. 9.1-9.147). American Public Health Association, Washington, DC.
  • Aydın Uncumusaoğlu, A., & Akkan, T. (2017). Assessment of water quality of Yağlıdere Stream (Turkey) using multivariate statistical techniques. Polish Journal of Environmental Studies, 26(4), 1715-1723. DOI: 10.15244/pjoes/68952
  • Balcı, R.S. (2007). Seyhan Baraj Gölünün Bakteriyolojik Kirlilik Düzeyinin Belirlenmesi ve Enterobacteriaceae Üyelerinde Antibiyotik Dirençliliği. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana.
  • Banseka, Y.J., & Tume, S.J.P. (2024). Coliform bacteria contamination of water resources and implications on public health in Fako Division, South West Region, Cameroon. Advances in Environmental Engineering Research, 5(2), 010. DOI: 10.21926/aeer.2402010
  • Chavarria, K., Batista, J., & Saltonstall, K. (2024). Widespread occurrence of fecal indicator bacteria in oligotrophic tropical streams: Are common culture-based coliform tests appropriate? PeerJ, 12, e18007. DOI: 10.7717/peerj.18007
  • Diwyanjalee, G.R., Bellanthudawa, B.K.A., De Silva, D.K.N.S., & Gunawardena, A.R. (2024). Biodegradability index (BDI) as an indicator for effluents quality measurement: A case study based on different industry sectors in Matara District, Sri Lanka. Water Practice & Technology, 19(8), 3092-3108. DOI: 10.2166/wpt.2024.183
  • Dudgeon, D., & Strayer, D.L. (2025). Bending the curve of global freshwater biodiversity loss: What are the prospects? Biological Reviews, 100(1), 205- 226. DOI: 10.1111/brv.13137
  • IPCC (Intergovernmental Panel on Climate Change). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. DOI: 10.1017/9781009325844
  • Işık, H., & Akkan, T. (2025). Water quality assessment with artificial neural network models: Performance comparison between SMN, MLP and PS-ANN methodologies. Arabian Journal for Science and Engineering, 50(1), 369-387. DOI: 10.1007/s13369-024-09238-5
  • Işık, H., Baş, E., Egrioğlu, E., & Akkan, T. (2024). A new single multiplicative neuron model artificial neural network based on black hole optimization algorithm: Forecasting the amounts of clean water given to metropolis. Stochastic Environmental Research and Risk Assessment, 38(11), 4259- 4274. DOI: 10.1007/s00477-024-02802-3
  • Madden, R.H., & Gilmour, A.A. (1995). Impedance as an alternative to MPN enumeration of coliforms in pasteurized milks. Letters in Applied Microbiology, 21(6), 387-388. DOI: 10.1111/j.1472-765X.1995.tb01088.x
  • Oelsner, G.P., Sprague, L.A., Murphy, J.C., Zuellig, R.E., Johnson, H.M., Ryberg, K.R., …, & Farmer, W.H. (2017). Water-quality trends in the Nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results (ver. 2.0). U.S. Geological Survey Scientific Investigations Report, 2017-5006. DOI: 10.3133/sir20175006
  • Onifade, O., Lawal, Z.K., Shamsuddin, N., Abas, P.E., Lai, D.T.C., & Gödeke, S.H. (2025). Impact of seasonal variation and population growth on coliform bacteria concentrations in the Brunei River: A temporal analysis with future projection. Water, 17, 1069. DOI: 10.3390/w17071069
  • Orr, J.A., Piggott, J.J., Atalah, J., Ladle, R.J., Townsend, C.R., & Matthaei, C.D. (2024). Interacting anthropogenic stressors in freshwaters: A systematic review. Ecology Letters, 27(10), e14463. DOI: 10.1111/ele.14463
  • Palabıyık, S., & Akkan, T. (2024). Evaluation of water quality based on artificial intelligence: Performance of multilayer perceptron neural networks and multiple linear regression versus water quality indexes. Environment, Development and Sustainability, (2024), 1-24. DOI: 10.1007/s10668-024-05075-6
  • Saunders, M.N.K., Lewis, P., & Thornhill, A. (2019). Research methods for business students (8th ed.). Pearson.
  • Sayer, C.A., Fernando, E., Jimenez, R.R., et al. (2025). One-quarter of freshwater fauna threatened with extinction. Nature, 638(8049), 138-145. DOI: 10.1038/s41586-024-08375-z
  • Sghiouer, F.E., Nahli, A., Bouka, H., & Chlaida, M. (2024). Assessment of the bacteriological and physicochemical water quality of the Inaouene and Larbaa Rivers (Taza, Morocco). Asian Journal of Water, Environment and Pollution, 21(6), 249-259. DOI: 10.3233/AJW240093
  • Shoda, M.E., & Murphy, J.C. (2022). Water-quality trends in the Delaware River Basin calculated using multisource data and two methods for trend periods ending in 2018. U.S. Geological Survey Scientific Investigations Report, 2022-5097. https://doi.org/10.3133/sir20225097
  • Streiner, D.L., Norman, G.R., & Cairney, J. (2015). Health measurement scales: A practical guide to their development and use (5th ed.). Oxford University Press. DOI: 10.1093/med/9780199685219.001.0001
  • Tickner, D., Opperman, J.J., Abell, R., Acreman, M., Arthington, A.H., Bunn, S.E., …, & Young, L. (2020). Bending the curve of freshwater biodiversity loss: An emergency recovery plan. BioScience, 70(4), 330-342. DOI: 10.1093/biosci/biaa002
  • UNESCO (on behalf of UN-Water). (2024). UN World Water Development Report 2024: Water for Prosperity and Peace. UNESCO.
  • Zar, J.H. (2010). Biostatistical analysis (5th ed.). Prentice Hall (Pearson).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz ve Nehir Ağzı Ekolojisi
Bölüm Araştırma Makalesi
Yazarlar

Buse Eraslan Akkan 0000-0003-1386-2817

Cengiz Mutlu 0000-0002-9741-4167

Bülent Verep 0000-0003-4238-8325

Proje Numarası BAP-C-250414-02
Gönderilme Tarihi 30 Eylül 2025
Kabul Tarihi 30 Ekim 2025
Erken Görünüm Tarihi 30 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 6

Kaynak Göster

APA Eraslan Akkan, B., Mutlu, C., & Verep, B. (2025). Spatiotemporal Assessment of Bacteriological Water Quality in Rivers: A Censoring-Aware Integrated Approach (Harşit Stream, Türkiye). Journal of Anatolian Environmental and Animal Sciences, 10(6), 913-922. https://doi.org/10.35229/jaes.1793470