Araştırma Makalesi
BibTex RIS Kaynak Göster

In vitro Antimicrobial Effect of Oregano, Garlic, and Rosemary Essential Oil Combinations Against Fish Pathogens

Yıl 2025, Cilt: 10 Sayı: 6, 1053 - 1061, 30.11.2025
https://doi.org/10.35229/jaes.1813438

Öz

In this study, the antibacterial effects of single and combined applications of Origanum onites (oregano), Allium sativum (garlic), and Rosmarinus officinalis (rosemary) essential oils on four important fish pathogens (Yersinia ruckeri, Vibrio anguillarum, Vagococcus salmoninarum, and Lactococcus garvieae) were evaluated in vitro by disk diffusion method. Pure oregano oil showed the highest inhibition against all bacteria, with minimum inhibitory concentrations (MICs) ranging from 0.98 to 31.25 µL/mL. Garlic and rosemary oils alone did not create an inhibition zone. Mixing oregano oil with garlic or rosemary oil in a 1:1 ratio significantly reduced the inhibition zones. According to the fractional inhibitory concentration index (FIC), mostly antagonistic or indifferent interactions were observed. The effect was further weakened in the triple mixture. The findings indicate that the antibacterial activity of essential oils depends not only on the potency of the individual components but also on the chemical interactions of these components and the target bacterial species. While oregano oil, rich in phenolic compounds, exhibits particularly high activity, its effectiveness may be diminished when mixed with oils low in phenolic compounds. Consequently, it is emphasized that instead of using random essential oil mixtures for fish disease control, natural formulations with optimized ingredient ratios and standardized chemical profiles should be developed.

Kaynakça

  • Abdel-Latif, H. M., Abdel-Tawwab, M., Khafaga, A.F., & Dawood, M.A. (2020). Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish & Shellfish İmmunology, 104, 1-7. DOI: 10.1016/j.fsi.2020.05.056
  • Assane, I.M., Valladao, G.M., & Pilarski, F. (2021). Chemical composition, cytotoxicity and antimicrobial activity of selected plant‐derived essential oils against fish pathogens. Aquaculture Research, 52(2), 793-809. DOI: 10.1111/are.14935
  • Baba, E., (2020). Antibacterial effects of seven essential plant oils on fish pathogens. Boletim do Instituto de Pesca, 46(3). DOI: 10.20950/1678- 2305.2020.46.3.565
  • Balta, F., & Tekin, N. (2021). Determination of antibacterial effect of tannic acid against some bacterial pathogens isolated from fish. Journal of Anatolian Environmental and Animal Sciences, 6(4), 532-539. DOI: 10.35229/jaes.1004833
  • Banaee, M., Sharma, D., Sinha, R., Mikušková, N., Velíšek, J., & Faggio, C. (2025). Herbal remedies in aquaculture: efficacy, risks, and the need for quality assurance. Aquaculture International, 33(6), 492. DOI: 10.1007/s10499- 025-02120-7
  • Bansemir, A., Blume, M., Schröder, S., & Lindequist, U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1), 79-84. DOI: 10.1016/j.aquaculture.2005.11.051
  • Bassolé, I.H.N., & Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006. DOI: 10.3390/molecules17043989
  • Citarasu, T. (2010). Herbal biomedicines: a new opportunity for aquaculture industry. Aquaculture International, 18(3), 403-414. DOI: 10.1007/s10499-009-9253-7
  • Dawood, M. A., El Basuini, M. F., Yilmaz, S., Abdel- Latif, H. M., Alagawany, M., Kari, Z. A., Razab, M. K. A. A., Hamid, N. K. A., Moonmanee, T., & Van Doan, H. (2022). Exploring the roles of dietary herbal essential oils in aquaculture: A review. Animals, 12(7), 823. DOI: 10.3390/ani12070823
  • Dawood, M. A., El Basuini, M. F., Zaineldin, A. I., Yilmaz, S., Hasan, M. T., Ahmadifar, E., El Asely, A. M., Abdel-Latif, H. M. R., Alagawany, M., Abu-Elala, N. M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens, 10(2), 185. DOI: 10.3390/pathogens10020185
  • Dengiz Balta, Z., & Balta, F. (2024). Determination of antimicrobial activity and MIC value of tannic acid against four different fish pathogens. Journal of Anatolian Environmental and Animal Sciences, 9(4), 582-589. DOI: 10.35229/jaes.1573899
  • Diler, Ö., Akın, L., & Özil, Ö. (2025). Foeniculum vulgare ve Origanum onites uçucu yağ nanoemülsiyonlarının bakteriyel balık patojenlerine karşı antibakteriyel ve antibiyofilm aktivitesinin tespiti. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 73-88. DOI: 10.35229/jaes.1573899
  • Diler, O., Gormez, O., Diler, I., & Metin, S. (2017). Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Nutrition, 23(4), 844-851. DOI: 10.1111/anu.12451
  • Donkor, M. N., Donkor, A. M., & Mosobil, R. (2023). Combination therapy: synergism among three plant extracts against selected pathogens. BMC Research Notes, 16(1), 83. DOI: 10.1186/s13104- 023-06354-7
  • Gormez, O., & Diler, O. (2014). In vitro antifungal activity of essential oils from Tymbra, Origanum, Satureja species and some pure compounds on the fish pathogenic fungus, Saprolegnia parasitica. Aquaculture Research, 45(7), 1196-1201. DOI: 10.1111/are.12060
  • Görmez, Ö., & Diler, Ö. (2017). Balık patojenlerine karşı bazı bitkisel uçucu yağların antibakteriyel aktivitesi. Yalvaç Akademi Dergisi, 2(1), 112-122.
  • Guadie, A., Dakone, D., Unbushe, D., Wang, A., & Xia, S. (2020). Antibacterial activity of selected medicinal plants used by traditional healers in Genta Meyche (Southern Ethiopia) for the treatment of gastrointestinal disorders. Journal of Herbal Medicine, 22, 100338. DOI: 10.1016/j.hermed.2020.100338
  • Isenberg, H.D. (1988). Pathogenicity and virulence: another view. Clinical Microbiology Reviews, 1(1), 40-53. DOI: 10.1128/cmr.1.1.40
  • Kolygas, M. N., Bitchava, K., Nathanailides, C., & Athanassopoulou, F. (2025). Phytochemicals: essential oils and other extracts for disease prevention and growth enhancement in aquaculture: Challenges and opportunities. Animals, 15(18), 2653. DOI: 10.3390/ani15182653
  • Lee, S. W. & N. Musa. (2008). Inhibition of Edwardsiella tarda and other fish pathogens Allium sativum L. (Alliaceae). American-Eurasian Journal of Agriculture and Environmental Science. 3, 92– 696.
  • Li, M., Wei, D., Huang, S., Huang, L., Xu, F., Yu, Q., Liu, M., & Li, P. (2022). Medicinal herbs and phytochemicals to combat pathogens in aquaculture. Aquaculture International, 30(3), 1239-1259. DOI: 10.1007/s10499-022-00841-7
  • Metin, S., & Biçer, Z. İ. (2020). Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 167-173. DOI: 10.12714/egejfas.37.2.07
  • Metin, S., Kara, N., Didinen, B. I., & Kubilay, A. (2021). Antibacterial activity of essential oils and extracts of some medicinal plants against bacterial fish pathogens. Israeli Journal of Aquaculture – Bamidgeh. 73(March), 1-14. DOI: 10.46989/001c.21456
  • Ncube, B., Finnie, J. F., & Van Staden, J. (2012). In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. Journal of Ethnopharmacology, 139(1), 81-89. DOI: 10.1016/j.jep.2011.10.025
  • Nejad, S. M., Özgüneş, H., & Başaran, N. (2017). Pharmacological and toxicological properties of eugenol. Turkish journal of pharmaceutical sciences, 14(2), 201. DOI: 10.4274/tjps.62207
  • Noor, S. (2016). Synergistic effect of the methanolic extract of lemongrass and some antibiotics to treat urinary tract bacteria. Journal of Biosciences and Medicines, 4(11), 48-58. DOI: 10.4236/jbm.2016.411006
  • Özil, Ö. (2023). Antiparasitic activity of medicinal plants against protozoan fish parasite Ichthyophthirius multifiliis. Israeli Journal of Aquaculture- Bamidgeh, 75(2), 1-9. DOI: 10.46989/001c.83257
  • Özil, Ö., & Diler, Ö. (2023). Effect of dietary Origanum onites on growth, non specific immunity and resistance against Yersinia ruckeri of rainbow trout (Oncorhynchus mykiss). Anais da Academia Brasileira de Ciências, 95(2), e20200952. DOI: 10.1590/0001-3765202320200952
  • Özil, Ö., Diler, Ö., & Nazıroğlu, M. (2022). Antifungal activity of some essential oil nanoemulsions against Saprolegniasis in rainbow trout (Oncorhynchus mykiss) eggs: Antifungal activity of essential oil nanoemulsions. Aquaculture International, 30(5), 2201-2212. DOI: 10.1007/s10499-022-00897-5
  • Reverter, M., Tapissier‐Bontemps, N., Sasal, P., & Saulnier, D. (2017). Use of medicinal plants in aquaculture. Diagnosis and control of diseases of fish and shellfish, 223-261. DOI: 10.1002/9781119152125.ch9
  • Suntres, Z. E., Coccimiglio, J., & Alipour, M. (2015). The bioactivity and toxicological actions of carvacrol. Critical reviews in food science and nutrition, 55(3), 304-318. DOI: 10.1080/10408398.2011.653458
  • Tadese, D. A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., Xu, P., Ge, X., Liu, M., Xu, X., Tamiru, M., Zhou, Z., Lakew, A., & Kevin, N. T. (2022). The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847. DOI: 10.1111/raq.12626
  • Toroglu, S. (2007). In vitro antimicrobial activity and antagonistic effect of essential oils from plant species. Journal of Environmental Biology, 28(3), 551-559.
  • Van Hai, N. (2015). The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture, 446, 88-96. DOI: 10.1016/j.aquaculture.2015.03.014
  • Yıldırım, A. B., & Türker, H. (2018). Antibacterial activity of some aromatic plant essential oils against fish pathogenic bacteria. Journal of Limnology and Freshwater Fisheries Research. DOI: 10.17216/LimnoFish.379784
  • Zhang, L. (2003). Pharmacodynamics research of allicin on Aeromonas hydrophila. Water Conservancy Related Fisheries, 23, 49-51.
  • Zouine, N., El Ghachtouli, N., El Abed, S., & Koraichi, S. I. (2024). A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Scientific African, 26, e02395. DOI: 10.1016/j.sciaf.2024.e02395
  • György, É. (2010). Study of the antimicrobial activity and synergistic effect of some plant extracts and essential oils. Rev Română Med Lab, 18(1), 49- 56.
  • Gadisa, E., Weldearegay, G., Desta, K., Tsegaye, G., Hailu, S., Jote, K., & Takele, A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine, 19(1), 24. DOI: 10.1186/s12906-019- 2429-4.

Kekik, Sarımsak ve Biberiye Uçucu Yağ Kombinasyonlarının Balık Patojenlerine Karşı In vitro Antimikrobiyal Etkisi

Yıl 2025, Cilt: 10 Sayı: 6, 1053 - 1061, 30.11.2025
https://doi.org/10.35229/jaes.1813438

Öz

Bu çalışmada Origanum onites (kekik), Allium sativum (sarımsak) ve Rosmarinus officinalis (biberiye) uçucu yağlarının tekil ve kombine kullanımlarının dört önemli balık patojeni (Yersinia ruckeri, Vibrio anguillarum, Vagococcus salmoninarum ve Lactococcus garvieae) üzerindeki antibakteriyel etkilerini in vitro koşullarda Disk difüzyon yöntemi ile değerlendirilmiştir. Saf kekik yağı tüm bakterilere karşı en yüksek inhibisyon oluşturmuş ve minimum inhibitör konsantrasyon (MIC) değerleri 0.98–31.25 µL/mL aralığında bulunmuştur. Sarımsak ve biberiye yağları tek başlarına belirgin bir inhibisyon zonu oluşturmamıştır. Kekik yağının sarımsak veya biberiye yağı ile 1:1 oranında karıştırılması sonucunda inhibisyon zonlarının anlamlı biçimde azaldığı ve fraksiyonel inhibitör konsantrasyon indeksi (FIC) analizine göre çoğunlukla antagonistik veya ilgisiz (indifferent) etkileşimlerin oluştuğu tespit edilmiştir. Üçlü karışımda ise etkinin daha da zayıfladığı görülmüştür. Bulgular, uçucu yağların antibakteriyel etkinliğinin yalnızca tekil bileşenlerin gücüne değil, aynı zamanda bu bileşenlerin kimyasal etkileşimlerine ve hedef bakterinin türüne bağlı olduğunu göstermektedir. Özellikle fenolik bileşiklerce zengin kekik yağı yüksek aktivite gösterirken, fenolik bileşenlerce fakir yağlarla karıştırılması neticesinde etkisinin azalmış olabileceği düşünülmektedir. Sonuç olarak, balık hastalıklarının kontrolünde rastgele uçucu yağ karışımlarının kullanımı yerine, bileşen oranları optimize edilmiş ve kimyasal profilleri standardize edilmiş doğal formülasyonların geliştirilmesi gerektiği vurgulanmaktadır.

Kaynakça

  • Abdel-Latif, H. M., Abdel-Tawwab, M., Khafaga, A.F., & Dawood, M.A. (2020). Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish & Shellfish İmmunology, 104, 1-7. DOI: 10.1016/j.fsi.2020.05.056
  • Assane, I.M., Valladao, G.M., & Pilarski, F. (2021). Chemical composition, cytotoxicity and antimicrobial activity of selected plant‐derived essential oils against fish pathogens. Aquaculture Research, 52(2), 793-809. DOI: 10.1111/are.14935
  • Baba, E., (2020). Antibacterial effects of seven essential plant oils on fish pathogens. Boletim do Instituto de Pesca, 46(3). DOI: 10.20950/1678- 2305.2020.46.3.565
  • Balta, F., & Tekin, N. (2021). Determination of antibacterial effect of tannic acid against some bacterial pathogens isolated from fish. Journal of Anatolian Environmental and Animal Sciences, 6(4), 532-539. DOI: 10.35229/jaes.1004833
  • Banaee, M., Sharma, D., Sinha, R., Mikušková, N., Velíšek, J., & Faggio, C. (2025). Herbal remedies in aquaculture: efficacy, risks, and the need for quality assurance. Aquaculture International, 33(6), 492. DOI: 10.1007/s10499- 025-02120-7
  • Bansemir, A., Blume, M., Schröder, S., & Lindequist, U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252(1), 79-84. DOI: 10.1016/j.aquaculture.2005.11.051
  • Bassolé, I.H.N., & Juliani, H.R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006. DOI: 10.3390/molecules17043989
  • Citarasu, T. (2010). Herbal biomedicines: a new opportunity for aquaculture industry. Aquaculture International, 18(3), 403-414. DOI: 10.1007/s10499-009-9253-7
  • Dawood, M. A., El Basuini, M. F., Yilmaz, S., Abdel- Latif, H. M., Alagawany, M., Kari, Z. A., Razab, M. K. A. A., Hamid, N. K. A., Moonmanee, T., & Van Doan, H. (2022). Exploring the roles of dietary herbal essential oils in aquaculture: A review. Animals, 12(7), 823. DOI: 10.3390/ani12070823
  • Dawood, M. A., El Basuini, M. F., Zaineldin, A. I., Yilmaz, S., Hasan, M. T., Ahmadifar, E., El Asely, A. M., Abdel-Latif, H. M. R., Alagawany, M., Abu-Elala, N. M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens, 10(2), 185. DOI: 10.3390/pathogens10020185
  • Dengiz Balta, Z., & Balta, F. (2024). Determination of antimicrobial activity and MIC value of tannic acid against four different fish pathogens. Journal of Anatolian Environmental and Animal Sciences, 9(4), 582-589. DOI: 10.35229/jaes.1573899
  • Diler, Ö., Akın, L., & Özil, Ö. (2025). Foeniculum vulgare ve Origanum onites uçucu yağ nanoemülsiyonlarının bakteriyel balık patojenlerine karşı antibakteriyel ve antibiyofilm aktivitesinin tespiti. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(1), 73-88. DOI: 10.35229/jaes.1573899
  • Diler, O., Gormez, O., Diler, I., & Metin, S. (2017). Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Nutrition, 23(4), 844-851. DOI: 10.1111/anu.12451
  • Donkor, M. N., Donkor, A. M., & Mosobil, R. (2023). Combination therapy: synergism among three plant extracts against selected pathogens. BMC Research Notes, 16(1), 83. DOI: 10.1186/s13104- 023-06354-7
  • Gormez, O., & Diler, O. (2014). In vitro antifungal activity of essential oils from Tymbra, Origanum, Satureja species and some pure compounds on the fish pathogenic fungus, Saprolegnia parasitica. Aquaculture Research, 45(7), 1196-1201. DOI: 10.1111/are.12060
  • Görmez, Ö., & Diler, Ö. (2017). Balık patojenlerine karşı bazı bitkisel uçucu yağların antibakteriyel aktivitesi. Yalvaç Akademi Dergisi, 2(1), 112-122.
  • Guadie, A., Dakone, D., Unbushe, D., Wang, A., & Xia, S. (2020). Antibacterial activity of selected medicinal plants used by traditional healers in Genta Meyche (Southern Ethiopia) for the treatment of gastrointestinal disorders. Journal of Herbal Medicine, 22, 100338. DOI: 10.1016/j.hermed.2020.100338
  • Isenberg, H.D. (1988). Pathogenicity and virulence: another view. Clinical Microbiology Reviews, 1(1), 40-53. DOI: 10.1128/cmr.1.1.40
  • Kolygas, M. N., Bitchava, K., Nathanailides, C., & Athanassopoulou, F. (2025). Phytochemicals: essential oils and other extracts for disease prevention and growth enhancement in aquaculture: Challenges and opportunities. Animals, 15(18), 2653. DOI: 10.3390/ani15182653
  • Lee, S. W. & N. Musa. (2008). Inhibition of Edwardsiella tarda and other fish pathogens Allium sativum L. (Alliaceae). American-Eurasian Journal of Agriculture and Environmental Science. 3, 92– 696.
  • Li, M., Wei, D., Huang, S., Huang, L., Xu, F., Yu, Q., Liu, M., & Li, P. (2022). Medicinal herbs and phytochemicals to combat pathogens in aquaculture. Aquaculture International, 30(3), 1239-1259. DOI: 10.1007/s10499-022-00841-7
  • Metin, S., & Biçer, Z. İ. (2020). Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 167-173. DOI: 10.12714/egejfas.37.2.07
  • Metin, S., Kara, N., Didinen, B. I., & Kubilay, A. (2021). Antibacterial activity of essential oils and extracts of some medicinal plants against bacterial fish pathogens. Israeli Journal of Aquaculture – Bamidgeh. 73(March), 1-14. DOI: 10.46989/001c.21456
  • Ncube, B., Finnie, J. F., & Van Staden, J. (2012). In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. Journal of Ethnopharmacology, 139(1), 81-89. DOI: 10.1016/j.jep.2011.10.025
  • Nejad, S. M., Özgüneş, H., & Başaran, N. (2017). Pharmacological and toxicological properties of eugenol. Turkish journal of pharmaceutical sciences, 14(2), 201. DOI: 10.4274/tjps.62207
  • Noor, S. (2016). Synergistic effect of the methanolic extract of lemongrass and some antibiotics to treat urinary tract bacteria. Journal of Biosciences and Medicines, 4(11), 48-58. DOI: 10.4236/jbm.2016.411006
  • Özil, Ö. (2023). Antiparasitic activity of medicinal plants against protozoan fish parasite Ichthyophthirius multifiliis. Israeli Journal of Aquaculture- Bamidgeh, 75(2), 1-9. DOI: 10.46989/001c.83257
  • Özil, Ö., & Diler, Ö. (2023). Effect of dietary Origanum onites on growth, non specific immunity and resistance against Yersinia ruckeri of rainbow trout (Oncorhynchus mykiss). Anais da Academia Brasileira de Ciências, 95(2), e20200952. DOI: 10.1590/0001-3765202320200952
  • Özil, Ö., Diler, Ö., & Nazıroğlu, M. (2022). Antifungal activity of some essential oil nanoemulsions against Saprolegniasis in rainbow trout (Oncorhynchus mykiss) eggs: Antifungal activity of essential oil nanoemulsions. Aquaculture International, 30(5), 2201-2212. DOI: 10.1007/s10499-022-00897-5
  • Reverter, M., Tapissier‐Bontemps, N., Sasal, P., & Saulnier, D. (2017). Use of medicinal plants in aquaculture. Diagnosis and control of diseases of fish and shellfish, 223-261. DOI: 10.1002/9781119152125.ch9
  • Suntres, Z. E., Coccimiglio, J., & Alipour, M. (2015). The bioactivity and toxicological actions of carvacrol. Critical reviews in food science and nutrition, 55(3), 304-318. DOI: 10.1080/10408398.2011.653458
  • Tadese, D. A., Song, C., Sun, C., Liu, B., Liu, B., Zhou, Q., Xu, P., Ge, X., Liu, M., Xu, X., Tamiru, M., Zhou, Z., Lakew, A., & Kevin, N. T. (2022). The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Reviews in Aquaculture, 14(2), 816-847. DOI: 10.1111/raq.12626
  • Toroglu, S. (2007). In vitro antimicrobial activity and antagonistic effect of essential oils from plant species. Journal of Environmental Biology, 28(3), 551-559.
  • Van Hai, N. (2015). The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture, 446, 88-96. DOI: 10.1016/j.aquaculture.2015.03.014
  • Yıldırım, A. B., & Türker, H. (2018). Antibacterial activity of some aromatic plant essential oils against fish pathogenic bacteria. Journal of Limnology and Freshwater Fisheries Research. DOI: 10.17216/LimnoFish.379784
  • Zhang, L. (2003). Pharmacodynamics research of allicin on Aeromonas hydrophila. Water Conservancy Related Fisheries, 23, 49-51.
  • Zouine, N., El Ghachtouli, N., El Abed, S., & Koraichi, S. I. (2024). A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Scientific African, 26, e02395. DOI: 10.1016/j.sciaf.2024.e02395
  • György, É. (2010). Study of the antimicrobial activity and synergistic effect of some plant extracts and essential oils. Rev Română Med Lab, 18(1), 49- 56.
  • Gadisa, E., Weldearegay, G., Desta, K., Tsegaye, G., Hailu, S., Jote, K., & Takele, A. (2019). Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complementary and Alternative Medicine, 19(1), 24. DOI: 10.1186/s12906-019- 2429-4.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balık Zararlıları ve Hastalıkları
Bölüm Araştırma Makalesi
Yazarlar

Öznur Özil 0000-0002-7863-2943

Ergi Bahrioğlu 0000-0003-3707-337X

Gönderilme Tarihi 30 Ekim 2025
Kabul Tarihi 19 Kasım 2025
Erken Görünüm Tarihi 30 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 6

Kaynak Göster

APA Özil, Ö., & Bahrioğlu, E. (2025). In vitro Antimicrobial Effect of Oregano, Garlic, and Rosemary Essential Oil Combinations Against Fish Pathogens. Journal of Anatolian Environmental and Animal Sciences, 10(6), 1053-1061. https://doi.org/10.35229/jaes.1813438