Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Alanların Ekolojik Bağlantılığının Mekânsal Zamansal Değerlendirilmesi: Manisa Örneği

Yıl 2020, , 585 - 596, 31.12.2020
https://doi.org/10.35229/jaes.794559

Öz

Peyzaj paterni, çevresel faktörler ve insan etkisi ile sürekli değişmektedir. Bu değişiklik, peyzajların ekolojik bağlantılılıklarını etkilemektedir. Peyzajda bağlantılılığın değişimini ele alırken, peyzaj paterninin dağılımını ve kompozisyonunu analiz etmek önemlidir. Sanayileşme ve kentleşme sürecinin peyzaj üzerindeki etkisinin yüksek olduğu Manisa’da yapılan bu araştırma, doğallık seviyesi yüksek yeşil alanlar arasındaki ekolojik bağlantılılığın zaman içerisindeki değişimine odaklanmıştır. 1990, 2000 ve 2018 yılları arasındaki yeşil alanların yapısal bağlantılık değişimi, çeşitli mekânsal analizler ile incelenmiştir. Bu araştırma, yeşil alanların peyzaj paternindeki parçalanmasını izlemek ve referans olarak kullanılabilecek plan (peyzaj planı, üst ölçekli mekânsal planlar, bölge planı, peyzaj atlası vb.) kararlarının oluşturulmasında, “çevresel izleme ve değerlendirme” katkısı sunması bakımından değerlidir. Bağlantı haritalarının oluşturulmasında ve bağlantılılığın yorumlanmasında morfolojik mekânsal patern analizi ve network analizi kullanılmıştır. Bu araştırmanın iki amacı vardır: 1) bağlantılılık ünitelerinin mekânsal-zamansal değişimini izlemek, 2) bağlantılılık açısından önemli ekolojik düğüm ve bağları haritalamak ve bağlantılılık sınıflarının zamansal değişimi yorumlamak. Sonuçlar, 1990-2018 yılları arasında habitat ünitelerinde %3,49 (464,6 km2) azalma olduğunu göstermiştir. Yapısal bağlantılılığı sağlayan merkez ve koridorlar alanlarından toplam 178 km2 alan kaybedilmiştir. Yeşil alanların bağlantılık düzeyi haritasına göre, mekânsal zamansal değişim sonucunda, yüksek düzeyde bağlantılılık sağlayan düğüm yamalarının (nodes) düşük düzeyde bağlantı sağlayan yamalara dönüşmüştür. Buna ek olarak, ekolojik bağlantılılık sağlayan bağlantı ünitelerinin (links) önem düzeyi değişmiştir. Ekolojik bağlantılılığı çok düşük ve orta düzeydeki yeşil alanların önem düzeyinin artması, araştırma alanındaki bazı yeşil alanların parçalandığını ve bu nedenle oluşan yeni bağlantıların, önceki yıllardaki bağlantı seviyesine göre daha önemli olduğuna işaret etmektedir.

Teşekkür

GuidosToolbox 2.9 yazılımının geliştiricisi Dr. Peter Vogt’a yeşil alanların mekânsal analizleri hakkında verdiği teknik destekten dolayı teşekkür ederim.

Kaynakça

  • Allaire, J. J., Gandrud, C., Russell, K., & Yetman, C. J. (2017). networkD3: D3 javascript network graphs from r. R package version 0.4.
  • Altan, Y., Aktaş, K., & Suveren, Y. M. (2017). Flora of beydere village (Manisa). Bilge International Journal of Science and Technology Research, 1(2), 143-154.
  • Arı, Y., & Derinöz, B. (2011). How not to manage a wetland? The case of Lake Marmara (Manisa) with a cultural ecological perspective. Turkish Journal of Geographical Sciences, 9(1), 41-60.
  • Bargelt, L., Fortin, M. J., & Murray, D. L. (2020). Assessing connectivity and the contribution of private lands to protected area networks in the United States. PloS One, 15(3), e0228946.
  • Brodie, J. F., Paxton, M., Nagulendran, K., Balamurugan, G., Clements, G. R., Reynolds, G., Jain, A., Hon, J. (2016). Connecting science, policy, and implementation for landscape‐scale habitat connectivity. Conservation Biology, 30(5), 950-961.
  • Carlier, J., & Moran, J. (2019). Landscape typology and ecological connectivity assessment to inform Greenway design. Science of the Total Environment, 651, 3241-3252.
  • Çavdar, B. (2016). Orman alanlarının peyzaj mekânsal ve yapısal analizi: İzmir ili Nif Dağı. Ege Üniversitesi Fen Bilimleri Enstitüsü. Bornova-İzmir, Türkiye, 70s.
  • Chubaty, A. M., Galpern, P., & Doctolero, S. C. (2020). The r toolbox grainscape for modelling and visualizing landscape connectivity using spatially explicit networks. Methods in Ecology and Evolution, 11(4), 591-595.
  • Correa Ayram, C. A., Mendoza, M. E., Etter, A., & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7-37.
  • Costanza, J. K., & Terando, A. J. (2019). Landscape connectivity planning for adaptation to future climate and land-use change. Current Landscape Ecology Reports, 4(1), 1-13.
  • CSB (2014). Çevre ve Şehircilik Bakanlığı mekânsal planlama genel müdürlüğü mekânsal planlar yapım yönetmeliği. Erişim tarihi: 20.04.2020, https://mpgm.csb.gov.tr/plan-gosterimleri-i-4926.
  • Cuba, N. (2015). Research note: Sankey diagrams for visualizing land cover dynamics. Landscape and Urban Planning, 139, 163-167.
  • Cunha, N. S., & Magalhães, M. R. (2019). Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecological Indicators, 104, 802-818.
  • Cushman, S. A., & McGarigal, K. (2019). Metrics and models for quantifying ecological resilience at landscape scales. Frontiers in Ecology and Evolution, 7, 440.
  • Daigle, R. M., Metaxas, A., Balbar, A. C., McGowan, J., Treml, E. A., Kuempel, C. D., Possingham, H. P., & Beger, M. (2020). Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods in Ecology and Evolution, 11(4), 570-579.
  • De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Ledda, A., Dessena, L., Laudari, L., & Fichera, C. R. (2016). Urban–rural ecological networks for landscape planning. Land Use Policy, 50, 312-327.
  • Desmet, P. G. (2018). Using landscape fragmentation thresholds to determine ecological process targets in systematic conservation plans. Biological Conservation, 221, 257-260.
  • Dupras, J., Marull, J., Parcerisas, L., Coll, F., Gonzalez, A., Girard, M., & Tello, E. (2016). The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environmental Science & Policy, 58, 61-73.
  • García-Díaz, P., Anderson, D. P., & Lurgi, M. (2019). Evaluating the effects of landscape structure on the recovery of an invasive vertebrate after population control. Landscape Ecology, 34(3), 615-626.
  • Garrido‐Garduño, T., Téllez‐Valdés, O., Manel, S., & Vázquez‐Domínguez, E. (2016). Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest. Journal of Zoology, 298(4), 293-302.
  • Gülçin, D., & Yılmaz, K. T. (2020). Quantification of the Change in Ecological Connectivity Using a GIS-Based Model and Current Complexity Metrics. lnternational Journal of Geography and Geography Education, 42, 689-701.
  • Gülersoy, A. E. (2013). Farklı Uzaktan Algılama Teknikleri Kullanılarak Arazi Örtüsü/Kullanımında Meydana Gelen Değişimlerin İncelenmesi: Manisa Merkez İlçesi Örneği (1986-2010). Electronic Turkish Studies, 8, 1915-1934.
  • Gurrutxaga, M., Lozano, P. J., & del Barrio, G. (2010). GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18(4), 318-326.
  • Hess, G. R., & Fischer, R. A. (2001). Communicating clearly about conservation corridors. Landscape and Urban Planning, 55(3), 195-208.
  • Ignatieva, M., Stewart, G. H., & Meurk, C. (2011). Planning and design of ecological networks in urban areas. Landscape and Ecological Engineering, 7(1), 17-25.
  • Işık-Gürsoy, D., Uğurlu, E. & Oldeland, J. (2016). Plant communities, diversity and endemism of the Kula Volcano, Manisa, Turkey. Plant Biosystems, 150(5), 1046-1055.
  • Kindlmann, P., & Burel, F. (2008). Connectivity measures: a review. Landscape Ecology, 23(8), 879-890.
  • Kocataş, A., Ergen, Z., Katağan, T., Koray, T., Büyükışık, B., Mater, D., Özel, I., Uçal, O. & Önen, M. (1988). Effects of pollution on benthic and pelagic ecosystems of the Izmir Bay (Turkey). MAP Technical Reports Series, 2, 53-72.
  • Koyuncu, O., & Sezer, O. (2019). About The Floristic Diversity of Manisa/Turkey. International Journal of Environmental Research and Technology, 2(3), 69-73.
  • LaPoint, S., Balkenhol, N., Hale, J., Sadler, J., & van der Ree, R. (2015). Ecological connectivity research in urban areas. Functional Ecology, 29(7), 868-878.
  • Liu, W., Hughes, A. C., Bai, Y., Li, Z., Mei, C., & Ma, Y. (2020a). Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landscape Ecology, 35(2), 389-402.
  • Liu, W., Hughes, A. C., Bai, Y., Li, Z., Mei, C., & Ma, Y. (2020b). Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landscape Ecology, 35(2), 389-402.
  • Mallarach, J. M., & Marull, J. (2006). Impact assessment of ecological connectivity at the regional level: recent developments in the Barcelona Metropolitan Area. Impact Assessment and Project Appraisal, 24(2), 127-137.
  • Martensen, A. C., Saura, S., & Fortin, M. J. (2017). Spatio‐temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods in Ecology and Evolution, 8(10), 1253-1264.
  • Marulli, J., & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2-4), 243-262.
  • McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C., & Cushman, S. A. (2016). Multi-scale habitat selection modeling: a review and outlook. Landscape Ecology, 31(6), 1161-1175.
  • McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PloS One, 7(12), e52604.
  • Meerow, S., & Newell, J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 159, 62-75.
  • Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95(1), 147-151.
  • Mougiakou, E., & Photis, Y. N. (2014). Urban green space network evaluation and planning: Optimizing accessibility based on connectivity and raster gis analysis. European Journal of Geography, 5(4), 19-46.
  • Moulds, S., Buytaert, W., & Mijic, A. (2015). An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geoscientific Model Development.
  • MV (2020). Manisa Valiliği Çevre ve Şehircilik İl Müdürlüğü Manisa İl Çevre Durum raporu. Erişim tarihi: 13.01.2020, https://webdosya.csb.gov.tr/db/ced/icerikler/man-sa_2018_-cdr_son 20191015130608.pdf.
  • Ng, C. N., Xie, Y. J., & Yu, X. J. (2013). Integrating landscape connectivity into the evaluation of ecosystem services for biodiversity conservation and its implications for landscape planning. Applied Geography, 42, 1-12.
  • Nor, A. N. M., Corstanje, R., Harris, J. A., Grafius, D. R., & Siriwardena, G. M. (2017). Ecological connectivity networks in rapidly expanding cities. Heliyon, 3(6), e00325.
  • Nowosad, J., & Stepinski, T. F. (2019). Information theory as a consistent framework for quantification and classification of landscape patterns. Landscape Ecology, 34(9), 2091-2101.
  • Oh, K., Lee, D., & Park, C. (2011). Urban ecological network planning for sustainable landscape management. Journal of Urban Technology, 18(4), 39-59.
  • Ossola, A., Locke, D., Lin, B., & Minor, E. (2019). Yards increase forest connectivity in urban landscapes. Landscape Ecology, 34(12), 2935-2948.
  • Pino, J., & Marull, J. (2012). Ecological networks: are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3), 684-690.
  • R (2020). R: A language and environment for statistical computing, Erişim tarihi: 16.07.2020, https://www.R-project.org.
  • Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J., & Vázquez, D. P. (2019). Landscape connectivity explains interaction network patterns at multiple scales. Ecology, 100(11), e02883.
  • Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2-3), 91-103.
  • Saura, S., Estreguil, C., Mouton, C., & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecological Indicators, 11(2), 407-416.
  • Shi, F., Liu, S., An, Y., Sun, Y., Zhao, S., Liu, Y., & Li, M. (2020). Spatio-Temporal Dynamics of Landscape Connectivity and Ecological Network Construction in Long Yangxia Basin at the Upper Yellow River. Land, 9(8), 265.
  • Soille, P., & Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern Recognition Letters, 30(4), 456-459.
  • Sutherland, C., Fuller, A. K., & Royle, J. A. (2015). Modelling non‐Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 6(2), 169-177.
  • Tarabon, S., Calvet, C., Delbar, V., Dutoit, T., & Isselin-Nondedeu, F. (2020). Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landscape and Urban Planning, 202, 103871.
  • Taylor, J., Paine, C., & FitzGibbon, J. (1995). From greenbelt to greenways: four Canadian case studies. Landscape and Urban Planning, 33(1-3), 47-64.
  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571-573.
  • TUIK (2019). Türkiye İstatistik Kurumu. Erişim tarihi: 01.01.2020, http://www.tuik.gov.tr/PreTablo.do?alt_id=1047.
  • Uroy, L., Ernoult, A., & Mony, C. (2019). Effect of landscape connectivity on plant communities: a review of response patterns. Landscape Ecology, 34(2), 203-225.
  • Uuemaa, E., Antrop, M., Roosaare, J., Marja, R., & Mander, Ü. (2009). Landscape metrics and indices: an overview of their use in landscape research. Living Reviews in Landscape Research, 3(1), 1-28.
  • Velázquez, J., Gutiérrez, J., García-Abril, A., Hernando, A., Aparicio, M., & Sánchez, B. (2019). Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). Forest Ecology and Management, 432, 286-297.
  • Vogt, P. (2016). GuidosToolbox (Graphical User Interface for the Description of image Objects and their Shapes). Digital image analysis software collection.
  • Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22(2), 171-177.
  • Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011). Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3-4), 387-404.
  • Wu, L. Y., He, D. J., You, W. B., Ji, Z. R., Tan, Y., & Zhao, L. L. (2017). The dynamics of landscape-scale ecological connectivity based on least-cost model in Dongshan Island, China. Journal of Mountain Science, 14(2), 336-345.
  • Zhang, Z., Meerow, S., Newell, J. P., & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • Zwoliński, Z., Najwer, A. & Giardino, M. (2018). Methods for assessing geodiversity, In: Reynard, E. & Brilha, J. (Eds.), Geoheritage, 1st ed., 27-52p, Elsevier, Amsterdam, Netherlands.

Spatio-Temporal Evaluation of the Structural Connectivity of Green Spaces in Manisa

Yıl 2020, , 585 - 596, 31.12.2020
https://doi.org/10.35229/jaes.794559

Öz

There are ongoing changes in landscape patterns due to environmental factors and human impact. These changes affect the ecological connectivity of landscapes. When considering the change in connectivity in the landscape, it is important to analyze the distribution and composition of the landscape patterns. Conducted in Manisa, where the industrialization and urbanization process has had a high impact on the landscape, this research focuses on the change over time in ecological connectivity between ecologically significant green spaces. This research uses spatial analysis to measure changes in structural connectivity between green spaces in the years 1990, 2000, and 2018. It contributes to the knowledge of environmental monitoring by providing a methodological approach that can be used to inform planning and policy decisions. Examples of its potential applications include the development of landscape plans, upper scale spatial plans, and regional plans. Morphological spatial pattern analysis and network analysis were used to create and interpret connectivity maps. This research has two purposes: 1) monitoring the spatio-temporal change in connectivity of morphological spatial pattern units, and 2) mapping important ecological nodes and links in connectivity and interpreting their temporal changes. The results showed that there was a 3.49% (464.6 km2) decrease in morphological spatial pattern classes (i.e. habitat units) between 1990 and 2018. A reduction of 178 km2 was observed for cores and bridges classes that provide structural connectivity. As a result of the spatio-temporal change of the habitat units between 1990 and 2018, the node patches that previously provided a high level of connectivity subsequently provided low connectivity. Additionally, it was found that the ecological importance level of the connectivity of links has changed. The increase in the ecological importance of green spaces with a very low and medium level of ecological connectivity indicates that some green spaces in the research area have become fragmented. The development of new links is therefore increasingly important to maintain the ecological sustainability of these fragmented green spaces.

Kaynakça

  • Allaire, J. J., Gandrud, C., Russell, K., & Yetman, C. J. (2017). networkD3: D3 javascript network graphs from r. R package version 0.4.
  • Altan, Y., Aktaş, K., & Suveren, Y. M. (2017). Flora of beydere village (Manisa). Bilge International Journal of Science and Technology Research, 1(2), 143-154.
  • Arı, Y., & Derinöz, B. (2011). How not to manage a wetland? The case of Lake Marmara (Manisa) with a cultural ecological perspective. Turkish Journal of Geographical Sciences, 9(1), 41-60.
  • Bargelt, L., Fortin, M. J., & Murray, D. L. (2020). Assessing connectivity and the contribution of private lands to protected area networks in the United States. PloS One, 15(3), e0228946.
  • Brodie, J. F., Paxton, M., Nagulendran, K., Balamurugan, G., Clements, G. R., Reynolds, G., Jain, A., Hon, J. (2016). Connecting science, policy, and implementation for landscape‐scale habitat connectivity. Conservation Biology, 30(5), 950-961.
  • Carlier, J., & Moran, J. (2019). Landscape typology and ecological connectivity assessment to inform Greenway design. Science of the Total Environment, 651, 3241-3252.
  • Çavdar, B. (2016). Orman alanlarının peyzaj mekânsal ve yapısal analizi: İzmir ili Nif Dağı. Ege Üniversitesi Fen Bilimleri Enstitüsü. Bornova-İzmir, Türkiye, 70s.
  • Chubaty, A. M., Galpern, P., & Doctolero, S. C. (2020). The r toolbox grainscape for modelling and visualizing landscape connectivity using spatially explicit networks. Methods in Ecology and Evolution, 11(4), 591-595.
  • Correa Ayram, C. A., Mendoza, M. E., Etter, A., & Salicrup, D. R. P. (2016). Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Progress in Physical Geography, 40(1), 7-37.
  • Costanza, J. K., & Terando, A. J. (2019). Landscape connectivity planning for adaptation to future climate and land-use change. Current Landscape Ecology Reports, 4(1), 1-13.
  • CSB (2014). Çevre ve Şehircilik Bakanlığı mekânsal planlama genel müdürlüğü mekânsal planlar yapım yönetmeliği. Erişim tarihi: 20.04.2020, https://mpgm.csb.gov.tr/plan-gosterimleri-i-4926.
  • Cuba, N. (2015). Research note: Sankey diagrams for visualizing land cover dynamics. Landscape and Urban Planning, 139, 163-167.
  • Cunha, N. S., & Magalhães, M. R. (2019). Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecological Indicators, 104, 802-818.
  • Cushman, S. A., & McGarigal, K. (2019). Metrics and models for quantifying ecological resilience at landscape scales. Frontiers in Ecology and Evolution, 7, 440.
  • Daigle, R. M., Metaxas, A., Balbar, A. C., McGowan, J., Treml, E. A., Kuempel, C. D., Possingham, H. P., & Beger, M. (2020). Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods in Ecology and Evolution, 11(4), 570-579.
  • De Montis, A., Caschili, S., Mulas, M., Modica, G., Ganciu, A., Bardi, A., Ledda, A., Dessena, L., Laudari, L., & Fichera, C. R. (2016). Urban–rural ecological networks for landscape planning. Land Use Policy, 50, 312-327.
  • Desmet, P. G. (2018). Using landscape fragmentation thresholds to determine ecological process targets in systematic conservation plans. Biological Conservation, 221, 257-260.
  • Dupras, J., Marull, J., Parcerisas, L., Coll, F., Gonzalez, A., Girard, M., & Tello, E. (2016). The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environmental Science & Policy, 58, 61-73.
  • García-Díaz, P., Anderson, D. P., & Lurgi, M. (2019). Evaluating the effects of landscape structure on the recovery of an invasive vertebrate after population control. Landscape Ecology, 34(3), 615-626.
  • Garrido‐Garduño, T., Téllez‐Valdés, O., Manel, S., & Vázquez‐Domínguez, E. (2016). Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest. Journal of Zoology, 298(4), 293-302.
  • Gülçin, D., & Yılmaz, K. T. (2020). Quantification of the Change in Ecological Connectivity Using a GIS-Based Model and Current Complexity Metrics. lnternational Journal of Geography and Geography Education, 42, 689-701.
  • Gülersoy, A. E. (2013). Farklı Uzaktan Algılama Teknikleri Kullanılarak Arazi Örtüsü/Kullanımında Meydana Gelen Değişimlerin İncelenmesi: Manisa Merkez İlçesi Örneği (1986-2010). Electronic Turkish Studies, 8, 1915-1934.
  • Gurrutxaga, M., Lozano, P. J., & del Barrio, G. (2010). GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18(4), 318-326.
  • Hess, G. R., & Fischer, R. A. (2001). Communicating clearly about conservation corridors. Landscape and Urban Planning, 55(3), 195-208.
  • Ignatieva, M., Stewart, G. H., & Meurk, C. (2011). Planning and design of ecological networks in urban areas. Landscape and Ecological Engineering, 7(1), 17-25.
  • Işık-Gürsoy, D., Uğurlu, E. & Oldeland, J. (2016). Plant communities, diversity and endemism of the Kula Volcano, Manisa, Turkey. Plant Biosystems, 150(5), 1046-1055.
  • Kindlmann, P., & Burel, F. (2008). Connectivity measures: a review. Landscape Ecology, 23(8), 879-890.
  • Kocataş, A., Ergen, Z., Katağan, T., Koray, T., Büyükışık, B., Mater, D., Özel, I., Uçal, O. & Önen, M. (1988). Effects of pollution on benthic and pelagic ecosystems of the Izmir Bay (Turkey). MAP Technical Reports Series, 2, 53-72.
  • Koyuncu, O., & Sezer, O. (2019). About The Floristic Diversity of Manisa/Turkey. International Journal of Environmental Research and Technology, 2(3), 69-73.
  • LaPoint, S., Balkenhol, N., Hale, J., Sadler, J., & van der Ree, R. (2015). Ecological connectivity research in urban areas. Functional Ecology, 29(7), 868-878.
  • Liu, W., Hughes, A. C., Bai, Y., Li, Z., Mei, C., & Ma, Y. (2020a). Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landscape Ecology, 35(2), 389-402.
  • Liu, W., Hughes, A. C., Bai, Y., Li, Z., Mei, C., & Ma, Y. (2020b). Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landscape Ecology, 35(2), 389-402.
  • Mallarach, J. M., & Marull, J. (2006). Impact assessment of ecological connectivity at the regional level: recent developments in the Barcelona Metropolitan Area. Impact Assessment and Project Appraisal, 24(2), 127-137.
  • Martensen, A. C., Saura, S., & Fortin, M. J. (2017). Spatio‐temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods in Ecology and Evolution, 8(10), 1253-1264.
  • Marulli, J., & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2-4), 243-262.
  • McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C., & Cushman, S. A. (2016). Multi-scale habitat selection modeling: a review and outlook. Landscape Ecology, 31(6), 1161-1175.
  • McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PloS One, 7(12), e52604.
  • Meerow, S., & Newell, J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 159, 62-75.
  • Moilanen, A., & Hanski, I. (2001). On the use of connectivity measures in spatial ecology. Oikos, 95(1), 147-151.
  • Mougiakou, E., & Photis, Y. N. (2014). Urban green space network evaluation and planning: Optimizing accessibility based on connectivity and raster gis analysis. European Journal of Geography, 5(4), 19-46.
  • Moulds, S., Buytaert, W., & Mijic, A. (2015). An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geoscientific Model Development.
  • MV (2020). Manisa Valiliği Çevre ve Şehircilik İl Müdürlüğü Manisa İl Çevre Durum raporu. Erişim tarihi: 13.01.2020, https://webdosya.csb.gov.tr/db/ced/icerikler/man-sa_2018_-cdr_son 20191015130608.pdf.
  • Ng, C. N., Xie, Y. J., & Yu, X. J. (2013). Integrating landscape connectivity into the evaluation of ecosystem services for biodiversity conservation and its implications for landscape planning. Applied Geography, 42, 1-12.
  • Nor, A. N. M., Corstanje, R., Harris, J. A., Grafius, D. R., & Siriwardena, G. M. (2017). Ecological connectivity networks in rapidly expanding cities. Heliyon, 3(6), e00325.
  • Nowosad, J., & Stepinski, T. F. (2019). Information theory as a consistent framework for quantification and classification of landscape patterns. Landscape Ecology, 34(9), 2091-2101.
  • Oh, K., Lee, D., & Park, C. (2011). Urban ecological network planning for sustainable landscape management. Journal of Urban Technology, 18(4), 39-59.
  • Ossola, A., Locke, D., Lin, B., & Minor, E. (2019). Yards increase forest connectivity in urban landscapes. Landscape Ecology, 34(12), 2935-2948.
  • Pino, J., & Marull, J. (2012). Ecological networks: are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3), 684-690.
  • R (2020). R: A language and environment for statistical computing, Erişim tarihi: 16.07.2020, https://www.R-project.org.
  • Santos, M., Cagnolo, L., Roslin, T., Marrero, H. J., & Vázquez, D. P. (2019). Landscape connectivity explains interaction network patterns at multiple scales. Ecology, 100(11), e02883.
  • Saura, S., & Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landscape and Urban Planning, 83(2-3), 91-103.
  • Saura, S., Estreguil, C., Mouton, C., & Rodríguez-Freire, M. (2011). Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecological Indicators, 11(2), 407-416.
  • Shi, F., Liu, S., An, Y., Sun, Y., Zhao, S., Liu, Y., & Li, M. (2020). Spatio-Temporal Dynamics of Landscape Connectivity and Ecological Network Construction in Long Yangxia Basin at the Upper Yellow River. Land, 9(8), 265.
  • Soille, P., & Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern Recognition Letters, 30(4), 456-459.
  • Sutherland, C., Fuller, A. K., & Royle, J. A. (2015). Modelling non‐Euclidean movement and landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution, 6(2), 169-177.
  • Tarabon, S., Calvet, C., Delbar, V., Dutoit, T., & Isselin-Nondedeu, F. (2020). Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landscape and Urban Planning, 202, 103871.
  • Taylor, J., Paine, C., & FitzGibbon, J. (1995). From greenbelt to greenways: four Canadian case studies. Landscape and Urban Planning, 33(1-3), 47-64.
  • Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571-573.
  • TUIK (2019). Türkiye İstatistik Kurumu. Erişim tarihi: 01.01.2020, http://www.tuik.gov.tr/PreTablo.do?alt_id=1047.
  • Uroy, L., Ernoult, A., & Mony, C. (2019). Effect of landscape connectivity on plant communities: a review of response patterns. Landscape Ecology, 34(2), 203-225.
  • Uuemaa, E., Antrop, M., Roosaare, J., Marja, R., & Mander, Ü. (2009). Landscape metrics and indices: an overview of their use in landscape research. Living Reviews in Landscape Research, 3(1), 1-28.
  • Velázquez, J., Gutiérrez, J., García-Abril, A., Hernando, A., Aparicio, M., & Sánchez, B. (2019). Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). Forest Ecology and Management, 432, 286-297.
  • Vogt, P. (2016). GuidosToolbox (Graphical User Interface for the Description of image Objects and their Shapes). Digital image analysis software collection.
  • Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22(2), 171-177.
  • Wainwright, J., Turnbull, L., Ibrahim, T. G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011). Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3-4), 387-404.
  • Wu, L. Y., He, D. J., You, W. B., Ji, Z. R., Tan, Y., & Zhao, L. L. (2017). The dynamics of landscape-scale ecological connectivity based on least-cost model in Dongshan Island, China. Journal of Mountain Science, 14(2), 336-345.
  • Zhang, Z., Meerow, S., Newell, J. P., & Lindquist, M. (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • Zwoliński, Z., Najwer, A. & Giardino, M. (2018). Methods for assessing geodiversity, In: Reynard, E. & Brilha, J. (Eds.), Geoheritage, 1st ed., 27-52p, Elsevier, Amsterdam, Netherlands.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Derya Gülçin 0000-0001-7118-0174

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 14 Eylül 2020
Kabul Tarihi 20 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gülçin, D. (2020). Yeşil Alanların Ekolojik Bağlantılığının Mekânsal Zamansal Değerlendirilmesi: Manisa Örneği. Journal of Anatolian Environmental and Animal Sciences, 5(4), 585-596. https://doi.org/10.35229/jaes.794559


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS