Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Polystyrene Species and Fiber Direction on Thermal Conductivity of Plywood

Yıl 2020, , 825 - 828, 31.12.2020
https://doi.org/10.35229/jaes.834382

Öz

Thermal conductivity of wood material is superior to other building materials because of its porous structure. Thermal conductivity is used to estimate the ability of insulation of material. Thermal conductivity of wood material has varied according to wood species, direction of wood fiber, specific gravity, moisture content, resin type, and addictive members used in manufacture of wood composite panels. The aim of study was to determine the effect of polystyrene species and fiber direction on thermal conductivity of plywood panels. In the study, two different wood types (black pine and spruce), two different fiber directions (parallel and perpendicular to the plywood fiber direction), two different types of insulator (expanded polystyrene-EPS and extruded polystyrene-XPS) and phenol formaldehyde glue were used as the adhesive type. Thermal conductivity of panels was determined according to ASTM C 518 & ISO 8301. As a result of the study, the lowest thermal conductivity values were obtained in the perpendicular fiber direction of the spruce plywood using XPS as insulation material. The use of XPS as an insulation material in plywood has given lower thermal conductivity values than EPS.

Kaynakça

  • ASTM C, 518, (2004). Methots of measuring thermal conductivity, absolute and reference method. ASTM International: West Conshohocken, USA.
  • Cetiner I & Shea A.D., (2018). Wood Waste as an Alternative Thermal Insulation For Buildings, Energy & Buildings, 168, 374–384.
  • Demir, A., 2014. The effects of fire retardant chemicals on thermal conductivity of plywood produced from different wood species. Master Thesis, KTU Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Demirkır C., Colak S. & Aydin I., (2013). Some Technological Properties of Wood–Styrofoam Composite Panels, Composites: Part B, 55, 513–517.
  • Demirkır, M. S., (2014). The effects of pressing time and adhesive types on technological properties of plywood obtained from different wood species. Master Thesis, KTU Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Dikici, A., & Kocagül, M., (2019). Experimental Comparison Of Eps, Xps And Stone Wool Insulation Material Used In Heat Insulation, Firat University Journal of Engineering, 31, 1.
  • Dissanayake D.M.K.W., Jayasinghe C. & Jayasinghe M.T.R., (2017). Comparative Embodied Energy Analysis of a House with Recycledexpanded Polystyrene (EPS) Based Foam Concrete Wall Panels, Energy and Buildings, 135, 85–94.
  • Fernando P.L.N., Jayasinghe M.T.R. & Jayasinghe C., (2017). Structural Feasibility of Expanded Polystyrene (EPS) Based Lightweight Concrete Sandwich Wall Panels, Construction and Building Materials, 139, 45–51.
  • Gu H. M., & Zink-Sharp A., (2005). Geometric model for softwood transverse thermal conductivity, Part I. Wood and Fiber Science, 37(4), 699-711.
  • Jang M., Shim W.J., Han G.M., Song Y.K. & Hong S.H., (2018). Formation of Microplastics by Polychaetes (Marphysa Sanguinea) Inhabiting Expanded Polystyrene Marine Debris, Marine Pollution Bulletin, 131, 365–369.
  • Kol, H. S., Özçifçi, A. & Altun, S., (2008). Effect of Some Chemicals on Thermal Conductivity of Laminated Veneer Lumbers Manufactured with Urea formaldehyde and Phenol formaldehyde Adhesives. Kastamonu Univ. Journal of Forestry Faculty, 8, 2, 125-130.
  • Krüger, E.L. & Adriazola, M., (2010). Thermal Analysis of Wood-based test cells. Construction and Building Materials, 24, 6, 999-1007.
  • Lakatos A. & Kalmar F., (2013). Investigation of Thickness and Density Dependence of Thermal Conductivity of Expanded Polystyrene Insulation Materials, Materials and Structures, 46, 1101–1105.
  • Özdemir, F., Tutuş, A., & Bal, B. C., (2013). Effect of fire retardants on thermal conductivity and limited oxygen index of high density fibreboard, SDU Faculty of Forestry Journal, 14, 121-126.
  • Rice, R. W. & Shepard, R., (2004). The Thermal Conductivity of Plantation Grown White Pine (Pinus strobus) and Red Pine (Pinus resinosa) at two moisture content levels, Forest Products Journal, 54, 1, 92-94.
  • Schmidta P.N.S., Cioffia M.O.H., Voorwalda H.J.C. & Silveira J.L., (2011). Flexural Test on Recycled Polystyrene, Procedia Engineering, 10, 930–935.
  • Sekino N., (2016). Density Dependence in The Thermal Conductivity of Cellulose Fiber Mats and Wood Shavings Mats: Investigation of The Apparent Thermal Conductivity of Coarse Pores, J. Wood Sci., 62, 20–26.
  • Sonderegger, W. and Niemz, P., (2009). Thermal Conductivity and Water Vapour Transmission Properties of Wood Based Materials. Europen, Journal of Wood Products. 67, 313-321.
  • Suleiman, B.M., Larfeldt, J., Leckner, B., & Gustavsson, M., (1999). Thermal Conductivity And Diffusivity of Wood, Wood Science and Technology, 33, 6, 465–473.
  • Uygunoğlu, T., Güneş, İ., Çaliş, M., & Özgüven, S., (2015). Investigation of Behavior of EPS and XPS Thermal Insulation Exterior Claddings During Fire. Journal of Polytechnic, 18, 1, 21-28.
  • Uysal, B., Yapıcı, F., Kol H., Ş., Özcan, C., Esen, R., & Korkmaz, M. (2011). Determination of thermal conductivity finished on impregnated wood material. 6th International Advanced Technologies Symposium (IATS’11),

Polistiren Türü ve Lif Yönünün Kontrplakların Isıl İletkenliği Üzerine Etkisi

Yıl 2020, , 825 - 828, 31.12.2020
https://doi.org/10.35229/jaes.834382

Öz

Ahşap malzemenin ısı iletkenliği gözenekli yapısı nedeniyle diğer yapı malzemelerinden üstündür. Isı iletkenliği, malzemenin yalıtım kabiliyetini tahmin etmek için kullanılır. Ahşap malzemenin ısıl iletkenliği, ağaç türü, ağaç lifinin yönü, özgül ağırlığı, nem içeriği, reçine türü ve ahşap kompozit panellerin imalatında kullanılan katkı maddelerine göre değişmektedir. Bu çalışmanın amacı, polistiren türlerinin ve lif yönünün kontrplak panellerin ısıl iletkenliği üzerindeki etkisini belirlemektir. Çalışmada, iki farklı ağaç türü (karaçam ve ladin), iki farklı lif yönü (kontrplak lif yönüne paralel ve dik), iki farklı tipte yalıtkan (genleştirilmiş polistiren-EPS ve ekstrüde polistiren-XPS) ve tutkal türü olarak fenol formaldehit tutkalı kullanılmıştır. Panellerin ısıl iletkenliği ASTM C 518 ve ISO 8301'e göre belirlenmiştir. Çalışma sonucunda, en düşük ısıl iletkenlik değerleri liflere dik yöndeki ladin kontrplaklarda izolasyon malzemesi olarak XPS kullanılması durumunda elde edilmiştir. Kontrplaklarda izolasyon malzemesi olarak XPS kullanılması durumunda EPS ye göre daha düşük ısıl iletkenlik değerleri elde edilmiştir.

Kaynakça

  • ASTM C, 518, (2004). Methots of measuring thermal conductivity, absolute and reference method. ASTM International: West Conshohocken, USA.
  • Cetiner I & Shea A.D., (2018). Wood Waste as an Alternative Thermal Insulation For Buildings, Energy & Buildings, 168, 374–384.
  • Demir, A., 2014. The effects of fire retardant chemicals on thermal conductivity of plywood produced from different wood species. Master Thesis, KTU Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Demirkır C., Colak S. & Aydin I., (2013). Some Technological Properties of Wood–Styrofoam Composite Panels, Composites: Part B, 55, 513–517.
  • Demirkır, M. S., (2014). The effects of pressing time and adhesive types on technological properties of plywood obtained from different wood species. Master Thesis, KTU Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  • Dikici, A., & Kocagül, M., (2019). Experimental Comparison Of Eps, Xps And Stone Wool Insulation Material Used In Heat Insulation, Firat University Journal of Engineering, 31, 1.
  • Dissanayake D.M.K.W., Jayasinghe C. & Jayasinghe M.T.R., (2017). Comparative Embodied Energy Analysis of a House with Recycledexpanded Polystyrene (EPS) Based Foam Concrete Wall Panels, Energy and Buildings, 135, 85–94.
  • Fernando P.L.N., Jayasinghe M.T.R. & Jayasinghe C., (2017). Structural Feasibility of Expanded Polystyrene (EPS) Based Lightweight Concrete Sandwich Wall Panels, Construction and Building Materials, 139, 45–51.
  • Gu H. M., & Zink-Sharp A., (2005). Geometric model for softwood transverse thermal conductivity, Part I. Wood and Fiber Science, 37(4), 699-711.
  • Jang M., Shim W.J., Han G.M., Song Y.K. & Hong S.H., (2018). Formation of Microplastics by Polychaetes (Marphysa Sanguinea) Inhabiting Expanded Polystyrene Marine Debris, Marine Pollution Bulletin, 131, 365–369.
  • Kol, H. S., Özçifçi, A. & Altun, S., (2008). Effect of Some Chemicals on Thermal Conductivity of Laminated Veneer Lumbers Manufactured with Urea formaldehyde and Phenol formaldehyde Adhesives. Kastamonu Univ. Journal of Forestry Faculty, 8, 2, 125-130.
  • Krüger, E.L. & Adriazola, M., (2010). Thermal Analysis of Wood-based test cells. Construction and Building Materials, 24, 6, 999-1007.
  • Lakatos A. & Kalmar F., (2013). Investigation of Thickness and Density Dependence of Thermal Conductivity of Expanded Polystyrene Insulation Materials, Materials and Structures, 46, 1101–1105.
  • Özdemir, F., Tutuş, A., & Bal, B. C., (2013). Effect of fire retardants on thermal conductivity and limited oxygen index of high density fibreboard, SDU Faculty of Forestry Journal, 14, 121-126.
  • Rice, R. W. & Shepard, R., (2004). The Thermal Conductivity of Plantation Grown White Pine (Pinus strobus) and Red Pine (Pinus resinosa) at two moisture content levels, Forest Products Journal, 54, 1, 92-94.
  • Schmidta P.N.S., Cioffia M.O.H., Voorwalda H.J.C. & Silveira J.L., (2011). Flexural Test on Recycled Polystyrene, Procedia Engineering, 10, 930–935.
  • Sekino N., (2016). Density Dependence in The Thermal Conductivity of Cellulose Fiber Mats and Wood Shavings Mats: Investigation of The Apparent Thermal Conductivity of Coarse Pores, J. Wood Sci., 62, 20–26.
  • Sonderegger, W. and Niemz, P., (2009). Thermal Conductivity and Water Vapour Transmission Properties of Wood Based Materials. Europen, Journal of Wood Products. 67, 313-321.
  • Suleiman, B.M., Larfeldt, J., Leckner, B., & Gustavsson, M., (1999). Thermal Conductivity And Diffusivity of Wood, Wood Science and Technology, 33, 6, 465–473.
  • Uygunoğlu, T., Güneş, İ., Çaliş, M., & Özgüven, S., (2015). Investigation of Behavior of EPS and XPS Thermal Insulation Exterior Claddings During Fire. Journal of Polytechnic, 18, 1, 21-28.
  • Uysal, B., Yapıcı, F., Kol H., Ş., Özcan, C., Esen, R., & Korkmaz, M. (2011). Determination of thermal conductivity finished on impregnated wood material. 6th International Advanced Technologies Symposium (IATS’11),
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Abdullah Uğur Birinci 0000-0003-3273-3615

Hasan Öztürk 0000-0002-5422-7556

Duygu Yücesoy 0000-0002-6635-8676

Cenk Demirkır 0000-0003-2503-8470

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 3 Aralık 2020
Kabul Tarihi 13 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Birinci, A. U., Öztürk, H., Yücesoy, D., Demirkır, C. (2020). The Effects of Polystyrene Species and Fiber Direction on Thermal Conductivity of Plywood. Journal of Anatolian Environmental and Animal Sciences, 5(5), 825-828. https://doi.org/10.35229/jaes.834382


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS