Araştırma Makalesi
BibTex RIS Kaynak Göster

Antibacterial Effects of Boric Acid Against Aquatic Pathogens

Yıl 2021, , 240 - 244, 30.06.2021
https://doi.org/10.35229/jaes.881144

Öz

Boron is a bioactive trace element generally found in rock, soil, water and air. It is an essential micronutrient for plants besides having beneficial effects on biological functions of human and animal health. Boric acid has antibacterial properties. Thus, the aim of this study was to evaluate the possible bactericidal and bacteriostatic effects of boric acid on the aquatic pathogens: Aeromonas veronii, Photobacterium damselae subsp. damselae, Vibrio anguillarum, Vibrio vulnificus, Vibrio harveyi, Vibrio rotiferianus, Vibrio tubiashii, Vibrio parahaemolyticus, Vibrio furnissii, and Vibrio fluvialis. The inhibitory properties of boric acid were detected by agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods. The results showed that Photobacterium damselae subsp. damselae and Vibrio species were resistant to different concentrations of boric acid. However, boric acid showed an inhibitory effect against Aeromonas veronii at concentrations of 3.09 and 1.54 mg/ml and zone diameters on the agar were measured as 19.4 ± 0.5, 15.92 ± 0.6 mm, respectively. The MIC and MBC of boric acid for Aeromonas veronii were found to be effective at a concentration of 1.54 mg/ml. These results suggested that boric acid might serve as a potential antimicrobial agent for Aeromonas veronii in aquaculture.

Kaynakça

  • Cui, H., Hao, S. & Arous, E. (2007). A distinct cause of necrotizing fasciitis: Aeromonas veronii biovar sobria. Surgical Infections, 8, 523–528.
  • Dinca, L. & Scorei, R. (2013). Boron in Human Nutrition and its Regulations Use. Journal of Nutritional Therapeutics, 2, 22-29.
  • Done, H.Y., Venkatesan, A.K. & Halden, R.U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? American Association of Pharmaceutical Scientists Journal, 17, 513-524.
  • Estrela, C., Rodrigues de Araújo Estrela, C., Bammann, L.L, et al. (2001). Two methods to evaluate the antimicrobial action of calcium hydroxide paste. Journal of Endodontics, 27(12),720-723.
  • Goldbach, H.E., Huang, L. & Wimmer, M.A. (2007). Boron functions in plants and animals: recent advances in boron research and open questions. In: Xu F, Goldbach H, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi LF. (Ed). 3-25p Advances in plant and animal boron nutrition. Dordrecht: Springer.
  • Hatha, M., Vivekanandhan, A.A, Joice, G.J. & Christol. (2005). Antibiotic resistance pattern of motile aeromonads from farm-raised freshwater fish. International Journal of Food Microbiology, 98(2), 131-134.
  • Hossain, S., Dahanayake, P.S., De Silva, B.C.J., Wickramanayake, M.V.K.S., Wimalasena, S.H.M.P. & Heo, G.J. (2019). Multi-drug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Letters in Applied Microbiology, 68, 370-377.
  • Houlsby, R.D., Ghajar, M. & Chavez, G.O. (1986). Antimicrobial activity of borate-buffered solutions. Antimicrobial Agents and Chemotherapy, 29, 803-806.
  • Janda, J.M. & Abbott S.L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23, 35-73.
  • Morandi, S., Morandi, F., Caselli, E., Shoichet, B.K. & Prati, F. (2008). Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorganic & Medicinal Chemistry, 16,1195-1205.
  • Nielsen, F.H. (1997). Boron in human and animal nutrition. Plant and Soil, 193,199-208.
  • Öz, M., Inanan, B.E. & Dikel, S. (2018). Effect of boric acid in rainbow trout (Oncorhynchus mykiss) growth performance. Journal of Applied Animal Research, 46(1), 990-993.
  • Perez, C., Paul, M. & Bazerque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae Et Medicinae Experimentalis, 15, 113-115.
  • Reichman, O., Akins, R. & Sobel, J.D. (2009). Boric acid addition to suppressive antimicrobial therapy for recurrent bacterial vaginosis. Sexually Transmitted Diseases, 36(11), 732-734.
  • Resende, J.A., Silva, V.L., Fontes, C.O., et al. (2012). Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environments, 27, 449-455.
  • Russel, J.B. & Diez-Gonzalez, F. (1998). The effects of fermentation acids on bacterial growth. Advances in Bacterial Physiology, 39, 205-234.
  • Samman, S., Naghii, M.R., Lyons Wall, P.M. & Verus, A.P. (1998). The nutritional and metabolic effects of boron in humans and animals. Biological Trace Element Research, 66, 227-235.
  • Sayin, Z., Ucan, U.S. & Sakmanoglu, A. (2016). Antibacterial and Antibiofilm Effects of Boron on Different Bacteria. Biological Trace Element Research, 173, 241-246.
  • Smyrli, M., Prapas, A., Rigos, G., Kokkari, C., Pavlidis, M. & Katharios, P. (2017). Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathology, 52, 68-81.
  • Tekedar, H.C., Arick, M.A., Hsu, C.Y., Thrash, A., Blom, J., Lawrence, M. L., & Abdelhamed, H. (2020). Identification of Antimicrobial Resistance Determinants in Aeromonas veronii Strain MS-17-88 Recovered From Channel Catfish (Ictalurus punctatus). Frontiers in Cellular and Infection Microbiology, 10, 348.

Borik Asitin Sucul Patojenler Üzerine Olan Antibakteriyel Etkileri

Yıl 2021, , 240 - 244, 30.06.2021
https://doi.org/10.35229/jaes.881144

Öz

Bor, genellikle kaya, toprak, su ve havada bulunan biyoaktif bir eser elementtir. Borik asidin insan ve hayvan sağlığının biyolojik fonksiyonları üzerinde faydalı etkileri bulunmaktadır. Bitkiler için de vazgeçilmez bir mikro besin olan borik asit antibakteriyel özelliktedir. Bu çalışmanın amacı borik asidin sucul patojenlerden Aeromonas veronii, Photobacterium damselae subsp. damselae Vibrio anguillarum, Vibrio vulnificus, Vibrio harveyi, Vibrio rotiferianus, Vibrio tubiashii, Vibrio parahaemolyticus, Vibrio furnissii ve Vibrio fluvialis’e karşı bakterisidal ve bakteriostatik etkilerini incelemektir. Bu çalışmada, borik asidin inhibisyon özellikleri, agar kuyusu difüzyonu, minimum inhibisyon konsantrasyonu (MİK) ve minimum bakterisidal konsantrasyonu (MBK) yöntemleri kullanılarak tespit edilmiştir. Sonuçlar, Photobacterium damselae subsp. damselae ve Vibrio türlerinin farklı konsantrasyonlardaki borik aside karşı dirençli olduğunu göstermiştir. Bununla birlikte, borik asit 3,09 ve 1,54 mg/ml konsantrasyonlarında Aeromonas veronii’ ye karşı inhibitör etki göstermiştir ve agarda sırasıyla 19,4 ± 0,5 mm ve 15,92 ± 0,6 mm halka çapları ölçülmüştür. Aeromonas veronii için MİK ve MBK değerleri 1,54 mg/ml olarak belirlenmiştir. Bu sonuçlar, borik asidin, su ürünleri yetiştiriciliğinde Aeromonas veronii için potansiyel bir antimikrobiyal ajan görevi görebileceğini ileri sürmektedir.

Kaynakça

  • Cui, H., Hao, S. & Arous, E. (2007). A distinct cause of necrotizing fasciitis: Aeromonas veronii biovar sobria. Surgical Infections, 8, 523–528.
  • Dinca, L. & Scorei, R. (2013). Boron in Human Nutrition and its Regulations Use. Journal of Nutritional Therapeutics, 2, 22-29.
  • Done, H.Y., Venkatesan, A.K. & Halden, R.U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? American Association of Pharmaceutical Scientists Journal, 17, 513-524.
  • Estrela, C., Rodrigues de Araújo Estrela, C., Bammann, L.L, et al. (2001). Two methods to evaluate the antimicrobial action of calcium hydroxide paste. Journal of Endodontics, 27(12),720-723.
  • Goldbach, H.E., Huang, L. & Wimmer, M.A. (2007). Boron functions in plants and animals: recent advances in boron research and open questions. In: Xu F, Goldbach H, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi LF. (Ed). 3-25p Advances in plant and animal boron nutrition. Dordrecht: Springer.
  • Hatha, M., Vivekanandhan, A.A, Joice, G.J. & Christol. (2005). Antibiotic resistance pattern of motile aeromonads from farm-raised freshwater fish. International Journal of Food Microbiology, 98(2), 131-134.
  • Hossain, S., Dahanayake, P.S., De Silva, B.C.J., Wickramanayake, M.V.K.S., Wimalasena, S.H.M.P. & Heo, G.J. (2019). Multi-drug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Letters in Applied Microbiology, 68, 370-377.
  • Houlsby, R.D., Ghajar, M. & Chavez, G.O. (1986). Antimicrobial activity of borate-buffered solutions. Antimicrobial Agents and Chemotherapy, 29, 803-806.
  • Janda, J.M. & Abbott S.L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23, 35-73.
  • Morandi, S., Morandi, F., Caselli, E., Shoichet, B.K. & Prati, F. (2008). Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorganic & Medicinal Chemistry, 16,1195-1205.
  • Nielsen, F.H. (1997). Boron in human and animal nutrition. Plant and Soil, 193,199-208.
  • Öz, M., Inanan, B.E. & Dikel, S. (2018). Effect of boric acid in rainbow trout (Oncorhynchus mykiss) growth performance. Journal of Applied Animal Research, 46(1), 990-993.
  • Perez, C., Paul, M. & Bazerque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae Et Medicinae Experimentalis, 15, 113-115.
  • Reichman, O., Akins, R. & Sobel, J.D. (2009). Boric acid addition to suppressive antimicrobial therapy for recurrent bacterial vaginosis. Sexually Transmitted Diseases, 36(11), 732-734.
  • Resende, J.A., Silva, V.L., Fontes, C.O., et al. (2012). Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. Microbes Environments, 27, 449-455.
  • Russel, J.B. & Diez-Gonzalez, F. (1998). The effects of fermentation acids on bacterial growth. Advances in Bacterial Physiology, 39, 205-234.
  • Samman, S., Naghii, M.R., Lyons Wall, P.M. & Verus, A.P. (1998). The nutritional and metabolic effects of boron in humans and animals. Biological Trace Element Research, 66, 227-235.
  • Sayin, Z., Ucan, U.S. & Sakmanoglu, A. (2016). Antibacterial and Antibiofilm Effects of Boron on Different Bacteria. Biological Trace Element Research, 173, 241-246.
  • Smyrli, M., Prapas, A., Rigos, G., Kokkari, C., Pavlidis, M. & Katharios, P. (2017). Aeromonas veronii infection associated with high morbidity and mortality in farmed European seabass Dicentrarchus labrax in the Aegean Sea, Greece. Fish Pathology, 52, 68-81.
  • Tekedar, H.C., Arick, M.A., Hsu, C.Y., Thrash, A., Blom, J., Lawrence, M. L., & Abdelhamed, H. (2020). Identification of Antimicrobial Resistance Determinants in Aeromonas veronii Strain MS-17-88 Recovered From Channel Catfish (Ictalurus punctatus). Frontiers in Cellular and Infection Microbiology, 10, 348.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ecren Uzun Yaylacı 0000-0002-2558-2487

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 16 Şubat 2021
Kabul Tarihi 22 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Uzun Yaylacı, E. (2021). Antibacterial Effects of Boric Acid Against Aquatic Pathogens. Journal of Anatolian Environmental and Animal Sciences, 6(2), 240-244. https://doi.org/10.35229/jaes.881144


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS