Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Two Different Triazole Fungicides Used for Sugar Beet on Soil Microbial Respiration

Yıl 2021, , 540 - 547, 31.12.2021
https://doi.org/10.35229/jaes.946632

Öz

Fungicide applications in agriculture may have harmful effects on non-target organisms like soil microorganisms. Toxicities of two different fungicides [Difenoconazole (D) and Difenoconazole+Propiconazole (DP)] for for sugar beet on soil microbial respiration were determined for short term in this study. Recommended field doses of fungicides (30 ml/da for D1 and 50 ml/da for DP1) and their 5 (D5 and DP10) and 10 folds (D10 and DP10) were mixed with soils with no previous pesticide application for this purpose.Soil microbial respirations were determined by the incubation of soil+fungicide mixtures under constant temperature (28°C) and moisture (80% of soil field capacity) for 42 days. All doses of both two fungicides significantly reduced soil microbial respiration in whole incubation period compared to control (P<0.05). In general, recommended field dose of difenoconazole had significant differences with its 5 folds and 10 folds, seperately while differences between DP1, DP5 and DP10 were found nonsignificant from the beginning of 7th day. Mean decrease amounts of 42 days of soil microbial respiration were found 11.1% for D1, 19.5% for D5, 22.8%for D10 while it was 12.8% for DP1, 15.2% for DP5 and 17.6% for DP10 compared to control. In conclusion, it may be suggested that all doses of both two fungicides had negative effects on microorganism activity in the clay soil that were used in this study and this negative effect was lower in the Difenoconazole+Propiconazole application.

Kaynakça

  • Acar, M., Çelik, İ., Gunal, H., Acir, N., Barut Bereket, Z., & Budak, M., (2018). Tillage effects on soil organic carbon, microbial biomass carbon and beta-glucosidase enzyme activity in a typic haploxerert soil. Scientific Papers-Series A-Agronomy, 61(1), 13-20.
  • Aka Sağlıker, H. & Şahin, M. (2018). The effects on soil carbon mineralization of different doses of epoxiconazole and carbendazim suspension used in wheat cultivation Scholars Academic Journal of Biosciences, 6(3), 263-268. Alef, K. (1995). Soil respiration. İn K. Alef & P. Nannipieri (Ed), Methods in Soil Microbiology and Biochemistry, 214-219p,. San Diego: Academic Press İnc.
  • Battaglin, W. A., Sandstrom, M. W., Kuivila, K. M., Kolpin, D. W., & Meyer, M. T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in us streams, 2005-2006. Water Air and Soil Pollution, 218(1-4), 307-322.
  • Bolton, M. D., Panella, L., Campbell, L., & Khan, M. F. R. (2010). Temperature, moisture, and fungicide effects in managing rhizoctonia root and crown rot of sugar beet. Phytopathology, 100(7), 689-697.
  • Carpinteiro, İ., Ramil, M., Rodriguez, İ., & Cela, R. (2010). Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1217(48), 7484-7492.
  • Çelik, İ., Günal, H., Acar, M., Bereket Barut, Z., Acir, N., & Budak, M. (2018). Long-term tillage induced changes in physical attributes of a clayey soil in eastern mediterranean region. Sciendo, 1(1), 32-39.
  • Çetin, M., Aksoy, H., Önöz, B., Eriş D. E.,Yüce M. İ.,Selek, B., Aksu, H., Burgan H. İ., Eşit, M.,Çavuş, Y., Orta, S. (2018). Deriving accumulated precipitation deficits from drought severityduration frequency curves: A case study in Adana province, Turkey. 1. İnternational Congress on Agricultural Structures and İrrigation, Antalya, Türkiye, 39-48.
  • Cheng, J. Z., Lee, X. Q., Gao, W. C., Chen, Y., Pan, W. J., & Tang, Y. (2017). Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Applied Soil Ecology, 121, 185-192.
  • Dilly, O. (2001). Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biology & Biochemistry, 33(1), 117-127.
  • Dong, F., Li, J., Chankvetadze, B., Cheng, Y., Xu, J., Liu, X., Li, Y., Chen, X., Bertucci, C., Tedesco, D., Zanasi, R., Zheng, Y. (2013). Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environmental Science & Technology, 47(7), 3386-3394.
  • Dong, X., Zuo, Z., Guo, J., Li, H., Zhang, L., Chen, M., Yang, Z., Wang, C. (2017). Reproductive effects of life-cycle exposure to difenoconazole on female marine medaka (Oryzias melastigma). Ecotoxicology, 26(6), 772-781.
  • Elmholt, S. (1992). Effect of propiconazole on substrate amended soil respiration following laboratory and field application. Pesticide Science, 34(2), 139-146.
  • Fernandez-Calvino, D., Rousk, J., Baath, E., Bollmann, U. E., Bester, K., & Brandt, K. K. (2017). Ecotoxicological assessment of propiconazole using soil bacterial and fungal growth assays. Applied Soil Ecology, 115, 27-30.
  • Filimon, M. N., Popescu, R., Verdes, D., Dumitrescu, G., Voia, O. S., Ahmadi, M., & Dronca, D. (2018). The effects of difenoconazole treatment on microorganism from soil. Revista De Chimie, 69(5), 1129-1133.
  • Filimon, M. N., Voia, S. O., Vladoiu, D. L., İsvoran, A., & Ostafe, V. (2015). Temperature dependent effect of difenoconazole on enzymatic activity from soil. Journal of the Serbian Chemical Society, 80(9), 1127-1137.
  • Godeau, C., Morin-Crini, N., Staelens, J. N., Martel, B., Rocchi, S., Chanet, G., Fourmentin, M., Crini, G. (2021). Adsorption of a triazole antifungal agent, difenoconazole, on soils from a cereal farm: Protective effect of hemp felt. Environmental Technology & İnnovation, 22, 101394.
  • Gopinath, K., Radhakrishnan, N. V., & Jayaraj, J. (2006). Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici. Crop Protection, 25(9), 1024-1031.
  • Hamada, M. S., Yin, Y. N., & Ma, Z. H. (2011). Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Protection, 30(8), 1028-1033.
  • Jorgensen, L. N., Matzen, N., Hansen, J. G., Semaskiene, R., Korbas, M., Danielewicz, J., Glazek, M., Maumene, C., Rodemann, B., Weigand, S., Hess, M., Blake, J., Clark, B., Kildea, S., Batailles, C., Ban, R., Havis, N., Treikale, O. (2018). Four azoles’ profile in the control of Septoria, yellow rust and brown rust in wheat across Europe. Crop Protection, 105, 16-27.
  • Kacar, B. (2009). Toprak Analizleri. Nobel Yayin Dağitim.
  • Kocak, B., & Darici, C. (2016). Priming effects of leaves of Laurus nobilis L. and 1,8-cineole on carbon mineralization. Chilean Journal of Agricultural Research, 76(1), 100-104.
  • Luo, Y., & Zhou, X. (2006). Chapter 5 - controlling factors. İn Y. Luo & X. Zhou (Eds.), Soil respiration and the environment, 79-105p, Burlington: Academic Press.
  • Meenakshi, S. N., Jeyaramraja, P. R., & Manian, R. (2007). Degradation of the fungicides, azoxystrobin and difenoconazole in soil and their influence on soil microbial activity. Pest Technology, 1(2), 133-138.
  • Millard, P., Midwood, A. J., Hunt, J. E., Barbour, M. M., & Whitehead, D. (2010). Quantifying the contribution of soil organic matter turnover to forest soil respiration, using natural abundance delta C-13. Soil Biology & Biochemistry, 42(6), 935-943.
  • Mu, X., Wang, K., Chai ,T., Zhu, L., Yang, Y., Zhang, J., Pang, S., Wang, C., Li, X. (2015). Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole. Environmental Pollution, 197, 278-286.
  • Mukhopadhyay, S., Das, S., Bhattacharyya, A., & Pal, S. (2011). Dissipation study of difenoconazole in/on chili fruit and soil in İndia. Bulletin of Environmental Contamination and Toxicology, 87(1), 54-57.
  • Munkvold, G. P., Martinson, C. A., Shriver, J. M., & Dixon, P. M. (2001). Probabilities for profitable fungicide use against gray leaf spot in hybrid maize. Phytopathology, 91(5), 477-484.
  • Nielsen, M. N., & Winding, A. (2002). Microorganisms as indicators of soil health. Denmark: National Environmental Research İnstitute.
  • Pan, L., Feng, X., Caob, M., Zhang, S., Huang, Y., Xua, T., Jing, J., Zhang, H. (2019). Determination and distribution of pesticides and antibiotics in agricultural soils from northern China. Rsc Advances, 9(28), 15686-15693.
  • Ramudu, A. C., Mohiddin, G. J., Srinivasulu, M., Madakka, M., & Rangaswamy, V. (2011). İmpact of fungicides chlorothalonil and propiconazole on microbial activities in groundnut (Arachis hypogaea L.) soils. İnternational Scholarly Research Notices, 2011, 623404
  • Reuveni, M., & Sheglov, D. (2002). Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Protection, 21(10), 951-955.
  • Sağliker, A. H., & Darici, C. (2005). Doğu Akdeniz Bölgesinde iki farkli ana materyalde yetişen Olea europaea L., Pinus brutia Ten. ve Pistacia terebinthus L. topraklarinda karbon mineralizasyonu. Ekoloji, 14(54), 20-24.
  • Satapute, P., Kamble, M. V., Adhikari, S. S., & Jogaiah, S. (2019). İnfluence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment, 651, 2334-2344.
  • Stefani, A., Felicio, J. D., & de Andrea, M. M. (2012). Comparative assessment of the effect of synthetic and natural fungicides on soil respiration. Sensors, 12(3), 3243-3252.
  • Thom, E., Ottow, J. C. G., & Benckiser, G. (1997). Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environmental Pollution, 96(3), 409-414.
  • Wang, F. Y., Cao, D. T., Shi, L. H., He, S. H., Li, X., Fang, H., & Yu, Y. L. (2020). Competitive adsorption and mobility of propiconazole and difenoconazole on five different soils. Bulletin of Environmental Contamination and Toxicology, 105(6), 927-933.
  • Wang, K., Wu, J. X., & Zhang, H. Y. (2012). Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicology and Environmental Safety, 86, 111-115.
  • Wang, Z. H., Yang, T., Qin, D. M., Gong, Y., & Ji, Y. (2008). Determination and dynamics of difenoconazole residues in Chinese cabbage and soil. Chinese Chemical Letters, 19(8), 969-972.
  • Zhang, H. P., Song, J. J., Zhang, Z., Zhang, Q., Chen, S., Mei, J., Yu, Y., Fang, H. (2021). Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. Journal of Hazardous Materials, 405.
  • Zubrod, J. P., Bundschuh, M., Arts, G., Bruhl, C. A., İmfeld, G., Knabel, A., Payraudeau, S., Rasmussen, J. J., Rohr, J., Scharmüller, A., Smalling, K., Stehle, S., Schulz, R., & Schafer, R. B. (2019). Fungicides: An Overlooked Pesticide Class? Environmental Science & Technology, 53(7), 3347-3365.

Şeker Pancarında Kullanılan İki Farklı Triazol Fungisidin Toprak Mikrobiyal Solunumuna Etkileri

Yıl 2021, , 540 - 547, 31.12.2021
https://doi.org/10.35229/jaes.946632

Öz

Tarımda fungisitlerin uygulanması toprak mikroorganizmaları gibi hedef olmayan organizmalara zararlı etkileri olabilir. Bu çalışmada, şeker pancarı yetiştiriciliğinde kullanılan iki farklı fungisidin [Difenoconazole (D) ve Difenoconazole+Propiconazole (DP)] kısa dönemde toprakta mikrobiyal solunumuna olan toksisiteleri belirlenmiştir. Bu amaçla fungisitlerin tavsiye edien tarla dozları (D1 için 30 ml/da ve DP1 için 50 ml/da) ile bu dozların 5 (D5 ve DP5) ve 10 katı (D10 ve DP10) daha önce pestisit uygulanmamış topraklara karıştırılmıştır. Toprak+fungisit karışımları sabit sıcaklık (28°C) ve nemde (tarla kapasitesinin %80’i kadar) 42 gün boyunca inkübe edilerek toprakların mikrobiyal solunumları belirlenmiştir. Her iki fungisitin tüm dozları kontrole göre toprak mikrobiyal solunumunu tüm inkübasyon süresince önemli bir biçimde azaltmıştır (P<0.05). Genel olarak, difenoconazole’in tavsiye edilen dozu ile bu dozun 5 ve 10 katları arasındaki farkları ayrı ayrı istatistiksel olarak önemli iken (P<0.05) inkübasyonun 7. gününden itibaren DP1, DP5 ve DP10 uygulamaları arasında önemli düzeyde fark saptanmamıştır.42 günlük toprak mikrobiyal solunumunun kontrole göre ortalama azalma oranları D1 için %11,1, D5 için %19,5, D10 için %22,8 iken DP1 için %12,8, DP5 için %15,2 ve DP10 için %17,6 olduğu belirlenmiştir. Sonuçta her iki fungisitin tüm dozlarının çalışmada kullanılan killi topraktaki mikroorganizma aktivitesini olumsuz etkilediği ve bu olumsuz etkinin Difenoconazole+Propiconazole uygulamasında, daha düşük seviyede olduğu söylenebilir.

Kaynakça

  • Acar, M., Çelik, İ., Gunal, H., Acir, N., Barut Bereket, Z., & Budak, M., (2018). Tillage effects on soil organic carbon, microbial biomass carbon and beta-glucosidase enzyme activity in a typic haploxerert soil. Scientific Papers-Series A-Agronomy, 61(1), 13-20.
  • Aka Sağlıker, H. & Şahin, M. (2018). The effects on soil carbon mineralization of different doses of epoxiconazole and carbendazim suspension used in wheat cultivation Scholars Academic Journal of Biosciences, 6(3), 263-268. Alef, K. (1995). Soil respiration. İn K. Alef & P. Nannipieri (Ed), Methods in Soil Microbiology and Biochemistry, 214-219p,. San Diego: Academic Press İnc.
  • Battaglin, W. A., Sandstrom, M. W., Kuivila, K. M., Kolpin, D. W., & Meyer, M. T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in us streams, 2005-2006. Water Air and Soil Pollution, 218(1-4), 307-322.
  • Bolton, M. D., Panella, L., Campbell, L., & Khan, M. F. R. (2010). Temperature, moisture, and fungicide effects in managing rhizoctonia root and crown rot of sugar beet. Phytopathology, 100(7), 689-697.
  • Carpinteiro, İ., Ramil, M., Rodriguez, İ., & Cela, R. (2010). Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1217(48), 7484-7492.
  • Çelik, İ., Günal, H., Acar, M., Bereket Barut, Z., Acir, N., & Budak, M. (2018). Long-term tillage induced changes in physical attributes of a clayey soil in eastern mediterranean region. Sciendo, 1(1), 32-39.
  • Çetin, M., Aksoy, H., Önöz, B., Eriş D. E.,Yüce M. İ.,Selek, B., Aksu, H., Burgan H. İ., Eşit, M.,Çavuş, Y., Orta, S. (2018). Deriving accumulated precipitation deficits from drought severityduration frequency curves: A case study in Adana province, Turkey. 1. İnternational Congress on Agricultural Structures and İrrigation, Antalya, Türkiye, 39-48.
  • Cheng, J. Z., Lee, X. Q., Gao, W. C., Chen, Y., Pan, W. J., & Tang, Y. (2017). Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Applied Soil Ecology, 121, 185-192.
  • Dilly, O. (2001). Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biology & Biochemistry, 33(1), 117-127.
  • Dong, F., Li, J., Chankvetadze, B., Cheng, Y., Xu, J., Liu, X., Li, Y., Chen, X., Bertucci, C., Tedesco, D., Zanasi, R., Zheng, Y. (2013). Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environmental Science & Technology, 47(7), 3386-3394.
  • Dong, X., Zuo, Z., Guo, J., Li, H., Zhang, L., Chen, M., Yang, Z., Wang, C. (2017). Reproductive effects of life-cycle exposure to difenoconazole on female marine medaka (Oryzias melastigma). Ecotoxicology, 26(6), 772-781.
  • Elmholt, S. (1992). Effect of propiconazole on substrate amended soil respiration following laboratory and field application. Pesticide Science, 34(2), 139-146.
  • Fernandez-Calvino, D., Rousk, J., Baath, E., Bollmann, U. E., Bester, K., & Brandt, K. K. (2017). Ecotoxicological assessment of propiconazole using soil bacterial and fungal growth assays. Applied Soil Ecology, 115, 27-30.
  • Filimon, M. N., Popescu, R., Verdes, D., Dumitrescu, G., Voia, O. S., Ahmadi, M., & Dronca, D. (2018). The effects of difenoconazole treatment on microorganism from soil. Revista De Chimie, 69(5), 1129-1133.
  • Filimon, M. N., Voia, S. O., Vladoiu, D. L., İsvoran, A., & Ostafe, V. (2015). Temperature dependent effect of difenoconazole on enzymatic activity from soil. Journal of the Serbian Chemical Society, 80(9), 1127-1137.
  • Godeau, C., Morin-Crini, N., Staelens, J. N., Martel, B., Rocchi, S., Chanet, G., Fourmentin, M., Crini, G. (2021). Adsorption of a triazole antifungal agent, difenoconazole, on soils from a cereal farm: Protective effect of hemp felt. Environmental Technology & İnnovation, 22, 101394.
  • Gopinath, K., Radhakrishnan, N. V., & Jayaraj, J. (2006). Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici. Crop Protection, 25(9), 1024-1031.
  • Hamada, M. S., Yin, Y. N., & Ma, Z. H. (2011). Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Protection, 30(8), 1028-1033.
  • Jorgensen, L. N., Matzen, N., Hansen, J. G., Semaskiene, R., Korbas, M., Danielewicz, J., Glazek, M., Maumene, C., Rodemann, B., Weigand, S., Hess, M., Blake, J., Clark, B., Kildea, S., Batailles, C., Ban, R., Havis, N., Treikale, O. (2018). Four azoles’ profile in the control of Septoria, yellow rust and brown rust in wheat across Europe. Crop Protection, 105, 16-27.
  • Kacar, B. (2009). Toprak Analizleri. Nobel Yayin Dağitim.
  • Kocak, B., & Darici, C. (2016). Priming effects of leaves of Laurus nobilis L. and 1,8-cineole on carbon mineralization. Chilean Journal of Agricultural Research, 76(1), 100-104.
  • Luo, Y., & Zhou, X. (2006). Chapter 5 - controlling factors. İn Y. Luo & X. Zhou (Eds.), Soil respiration and the environment, 79-105p, Burlington: Academic Press.
  • Meenakshi, S. N., Jeyaramraja, P. R., & Manian, R. (2007). Degradation of the fungicides, azoxystrobin and difenoconazole in soil and their influence on soil microbial activity. Pest Technology, 1(2), 133-138.
  • Millard, P., Midwood, A. J., Hunt, J. E., Barbour, M. M., & Whitehead, D. (2010). Quantifying the contribution of soil organic matter turnover to forest soil respiration, using natural abundance delta C-13. Soil Biology & Biochemistry, 42(6), 935-943.
  • Mu, X., Wang, K., Chai ,T., Zhu, L., Yang, Y., Zhang, J., Pang, S., Wang, C., Li, X. (2015). Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole. Environmental Pollution, 197, 278-286.
  • Mukhopadhyay, S., Das, S., Bhattacharyya, A., & Pal, S. (2011). Dissipation study of difenoconazole in/on chili fruit and soil in İndia. Bulletin of Environmental Contamination and Toxicology, 87(1), 54-57.
  • Munkvold, G. P., Martinson, C. A., Shriver, J. M., & Dixon, P. M. (2001). Probabilities for profitable fungicide use against gray leaf spot in hybrid maize. Phytopathology, 91(5), 477-484.
  • Nielsen, M. N., & Winding, A. (2002). Microorganisms as indicators of soil health. Denmark: National Environmental Research İnstitute.
  • Pan, L., Feng, X., Caob, M., Zhang, S., Huang, Y., Xua, T., Jing, J., Zhang, H. (2019). Determination and distribution of pesticides and antibiotics in agricultural soils from northern China. Rsc Advances, 9(28), 15686-15693.
  • Ramudu, A. C., Mohiddin, G. J., Srinivasulu, M., Madakka, M., & Rangaswamy, V. (2011). İmpact of fungicides chlorothalonil and propiconazole on microbial activities in groundnut (Arachis hypogaea L.) soils. İnternational Scholarly Research Notices, 2011, 623404
  • Reuveni, M., & Sheglov, D. (2002). Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Protection, 21(10), 951-955.
  • Sağliker, A. H., & Darici, C. (2005). Doğu Akdeniz Bölgesinde iki farkli ana materyalde yetişen Olea europaea L., Pinus brutia Ten. ve Pistacia terebinthus L. topraklarinda karbon mineralizasyonu. Ekoloji, 14(54), 20-24.
  • Satapute, P., Kamble, M. V., Adhikari, S. S., & Jogaiah, S. (2019). İnfluence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment, 651, 2334-2344.
  • Stefani, A., Felicio, J. D., & de Andrea, M. M. (2012). Comparative assessment of the effect of synthetic and natural fungicides on soil respiration. Sensors, 12(3), 3243-3252.
  • Thom, E., Ottow, J. C. G., & Benckiser, G. (1997). Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environmental Pollution, 96(3), 409-414.
  • Wang, F. Y., Cao, D. T., Shi, L. H., He, S. H., Li, X., Fang, H., & Yu, Y. L. (2020). Competitive adsorption and mobility of propiconazole and difenoconazole on five different soils. Bulletin of Environmental Contamination and Toxicology, 105(6), 927-933.
  • Wang, K., Wu, J. X., & Zhang, H. Y. (2012). Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotoxicology and Environmental Safety, 86, 111-115.
  • Wang, Z. H., Yang, T., Qin, D. M., Gong, Y., & Ji, Y. (2008). Determination and dynamics of difenoconazole residues in Chinese cabbage and soil. Chinese Chemical Letters, 19(8), 969-972.
  • Zhang, H. P., Song, J. J., Zhang, Z., Zhang, Q., Chen, S., Mei, J., Yu, Y., Fang, H. (2021). Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. Journal of Hazardous Materials, 405.
  • Zubrod, J. P., Bundschuh, M., Arts, G., Bruhl, C. A., İmfeld, G., Knabel, A., Payraudeau, S., Rasmussen, J. J., Rohr, J., Scharmüller, A., Smalling, K., Stehle, S., Schulz, R., & Schafer, R. B. (2019). Fungicides: An Overlooked Pesticide Class? Environmental Science & Technology, 53(7), 3347-3365.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Burak Koçak 0000-0003-4144-6079

Şahin Cenkseven 0000-0003-2330-8668

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 1 Haziran 2021
Kabul Tarihi 4 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Koçak, B., & Cenkseven, Ş. (2021). Şeker Pancarında Kullanılan İki Farklı Triazol Fungisidin Toprak Mikrobiyal Solunumuna Etkileri. Journal of Anatolian Environmental and Animal Sciences, 6(4), 540-547. https://doi.org/10.35229/jaes.946632


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS