Derleme
BibTex RIS Kaynak Göster

Nanoparticular Vaccines

Yıl 2021, , 578 - 584, 31.12.2021
https://doi.org/10.35229/jaes.970713

Öz

Nanotechnology is the applied science of making and manipulating matter on a small scale in the range of 1-100 nm. The application of nanotechnology, particularly in vaccine science, has developed rapidly in recent years, leading to the birth of "nanovasinology". Nanotechnology is playing an increasingly important role in vaccine development, thanks to nanocarrier-based delivery systems that offer the possibility of enhancing cellular and humoral immune responses. Nanoparticle-based vaccine applications can protect vaccines from premature spoilage, increase stability, and have good adjuvant properties. NPs, with their biodegradable, minimally toxic properties, provide effective and alternative platforms to traditional vaccine methods that can be used to deliver various antigens to specific tissues and organs. Virus-like particles, liposomes, ISCOMs, polymeric inorganic nanoparticles, and emulsions; out-of-scale materials are attracting attention as potential delivery vehicles that can both stabilize vaccine antigens and act as adjuvants. The composition of the nanoparticle material plays an important role in the transport and pharmacokinetic properties of the nanoparticles, the rate of release and cellular uptake, biodegradability and biocompatibility. It is thought that nanoparticular vaccines may guide the development of vaccines for many diseases in the future, including rapidly emerging pandemics such as COVID -19 and cancers that cannot be controlled by vaccination. This review; It provides information on the physical properties of nanoparticles and nanoparticle vaccine types and reviews studies using nanoparticle-based vaccine technologies.

Kaynakça

  • Alexyuk, P. G., Bogoyavlenskiy, A. P., Alexyuk, M. S., Turmagambetova, A. S., Zaitseva, I. A., Omirtaeva, E. S., & Berezin, V. E. (2019). Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Archives of Virology, 164(7), 1793–1803. DOI: 10.1007/s00705-019-04273-2
  • Altenburg, Arwen F., Kreijtz, J. H. C. M., de Vries, R. D., Song, F., Fux, R., Rimmelzwaan, G. F., Sutter, G., & Volz, A. (2014). Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses, 6(7), 2735–2761. DOI: 10.3390/v6072735
  • Borges, O., Cordeiro-da-Silva, A., Tavares, J., Santarém, N., de Sousa, A., Borchard, G., & Junginger, H. E. (2008). Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Für Pharmazeutische Verfahrenstechnik e.V, 69(2), 405–416. DOI: 10.1016/j.ejpb.2008.01.019
  • Chahal, J. S., Khan, O. F., Cooper, C. L., McPartlan, J. S., Tsosie, J. K., Tilley, L. D., Sidik, S. M., Lourido, S., Langer, R., Bavari, S., Ploegh, H. L., & Anderson, D. G. (2016). Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 4133-4142. DOI: 10.1073/pnas.1600299113
  • Chu, D., Gao, J., & Wang, Z. (2015). Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano, 9(12), 11800–11811. DOI: 10.1021/acsnano.5b05583
  • Cohen, A. A., Gnanapragasam, P. N. P., Lee, Y. E., Hoffman, P. R., Ou, S., Kakutani, L. M., … Bjorkman, P. J. (2021). Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science (New York, N.Y.), 371(6530), 735–741. DOI: 10.1126/science.abf6840
  • Das, I., Padhi, A., Mukherjee, S., Dash, D. P., Kar, S., & Sonawane, A. (2017). Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology, 28(16), 165101. DOI: 10.1088/1361-6528/aa60fd
  • Demento, S. L., Cui, W., Criscione, J. M., Stern, E., Tulipan, J., Kaech, S. M., & Fahmy, T. M. (2012). Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 33(19), 4957–4964. DOI: 10.1016/j.biomaterials.2012.03.041
  • Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B., & McNeil, S. E. (2008). Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Molecular Pharmaceutics, 5(4), 487–495. DOI: 10.1021/mp800032f
  • Feng, Ganzhu, Jiang, Q., Xia, M., Lu, Y., Qiu, W., Zhao, D., Lu, L., Peng, G., & Wang, Y. (2013). Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PloS One, 8(4), 61135. DOI: 10.1371/journal.pone.0061135
  • Foged, C., Brodin, B., Frokjaer, S., & Sundblad, A. (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 298(2), 315–322. DOI: 10.1016/j.ijpharm.2005.03.035
  • Gao, Y., Wijewardhana, C., & Mann, J. F. S. (2018). Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Frontiers in Immunology, 9, 345. DOI: 10.3389/fimmu.2018.00345
  • Gregory, A. E., Williamson, E. D., Prior, J. L., Butcher, W. A., Thompson, I. J., Shaw, A. M., & Titball, R. W. (2012). Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine, 30(48), 6777–6782. DOI: 10.1016/j.vaccine.2012.09.021
  • Keller, S., Wilson, J. T., Patilea, G. I., Kern, H. B., Convertine, A. J., & Stayton, P. S. (2014). Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. Journal of Controlled Release: Official Journal of the Controlled Release Society, 191, 24–33. DOI: 10.1016/j.jconrel.2014.03.041
  • Kelly, H. G., Kent, S. J., & Wheatley, A. K. (2019). Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Review of Vaccines, 18(3), 269–280. DOI: 10.1080/14760584.2019.1578216
  • Kheirollahpour, M., Mehrabi, M., Dounighi, N. M., Mohammadi, M., & Masoudi, A. (2020). Nanoparticles and vaccine development. Pharmaceutical Nanotechnology, 8(1), 6–21. DOI: 10.2174/2211738507666191024162042
  • Kim, S. T., Saha, K., Kim, C., & Rotello, V. M. (2013). The role of surface functionality in determining nanoparticle cytotoxicity. Accounts of Chemical Research, 46(3), 681–691. DOI: 10.1021/ar3000647
  • Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology, 13(3), 159–175. DOI: 10.1038/nri3399
  • Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., & Zhou, Q. (2021). A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science, 7(4), 512–533. DOI: 10.1021/acscentsci.1c00120
  • Ma, X., Zou, F., Yu, F., Li, R., Yuan, Y., Zhang, Y., … Zhang, H. (2020). Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity, 53(6), 1315-1330.e9. DOI: 10.1016/j.immuni.2020.11.015
  • Manish, M., Rahi, A., Kaur, M., Bhatnagar, R., & Singh, S. (2013). A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PloS One, 8(4), e61885. DOI: 10.1371/journal.pone.0061885
  • Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P., & Bachmann, M. F. (2008). Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 38(5), 1404–1413. DOI: 10.1002/eji.200737984
  • Moon, J. J., Suh, H., Bershteyn, A., Stephan, M. T., Liu, H., Huang, B., Sohail, M., Luo, S., Um, S. H., Khant, H., Goodwin, J. T., Ramos, J., Chiu, W., & Irvine, D. J. (2011). Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 10(3), 243–251. DOI: 10.1038/nmat2960
  • Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., Kawaguchi, A., Hasegawa, H., Kajino, K., Ninomiya, T., Ijiro, K., & Sawa, H. (2013). Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7(5), 3926–3938. DOI: 10.1021/nn3057005
  • O’Hagan, D. T. (2007). MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Review of Vaccines, 6(5), 699–710. DOI: 10.1586/14760584.6.5.699
  • Perisé-Barrios, A. J., Jiménez, Pereira de Oliveira, M., Garcion, E., Venisse, N., Benoit, J.-P., Couet, W., & Olivier, J.-C. (2005). Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharmaceutical Research, 22(11), 1898–1905. DOI: 10.1007/s11095-005-7147-6
  • Powell, A. E., Zhang, K., Sanyal, M., Tang, S., Weidenbacher, P. A., Li, S., … Kim, P. S. (2021). A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Central Science, 7(1), 183–199. DOI: 10.1021/acscentsci.0c01405
  • Prego, C., Paolicelli, P., Díaz, B., Vicente, S., Sánchez, A., González-Fernández, A., & Alonso, M. J. (2010). Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 28(14), 2607–2614. DOI: 10.1016/j.vaccine.2010.01.011
  • Reddy, S. T., van der Vlies, A. J., Simeoni, E., Angeli, V., Randolph, G. J., O’Neil, C. P., Lee, L. K., Swartz, M. A., & Hubbell, J. A. (2007). Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 25(10), 1159–1164. DOI: 10.1038/nbt1332
  • Ribeiro, A. M., Souza, A. C. O., Amaral, A. C., Vasconcelos, N. M., Jeronimo, M. S., Carneiro, F. P., Faccioli, L. H., Felipe, M. S. S., Silva, C. L., & Bocca, A. L. (2013). Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection. Journal of Biomedical Nanotechnology, 9(2), 221–230. DOI: 10.1166/jbn.2013.1491
  • Shae, D., Postma, A., & Wilson, J. T. (2016). Vaccine delivery: where polymer chemistry meets immunology. Therapeutic Delivery, 7(4), 193–196. DOI: 10.4155/tde-2016-0008
  • Shah, P., Bhalodia, D., & Shelat, P. (2010). Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 1(1), 24. DOI:10.4103/0975-8453.59509
  • Tao, W., & Gill, H. S. (2015). M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine, 33(20), 2307–2315. DOI: 10.1016/j.vaccine.2015.03.063
  • Temchura, V. V., Kozlova, D., Sokolova, V., Uberla, K., & Epple, M. (2014). Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen. Biomaterials, 35(23), 6098–6105. DOI: 10.1016/j.biomaterials.2014.04.010
  • Thomas, C., Rawat, A., Hope-Weeks, L., & Ahsan, F. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Molecular Pharmaceutics, 8(2), 405–415. DOI: 10.1021/mp100255c
  • U.S. National Library of Medicine. (2021). Clinical Trials, Rockville Pike Bethesta, mD. https://clinicaltrials.gov/. (Temmuz 2021)
  • Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y., Wu, X., Ji, Y., Zhao, Y., Ma, L., Shao, Y., & Chen, C. (2012). Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Letters, 12(4), 2003–2012. DOI: 10.1021/nl300027p
  • Yu, M., Jambhrunkar, S., Thorn, P., Chen, J., Gu, W., & Yu, C. (2013). Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 5(1), 178–183. DOI: 10.1039/c2nr32145a
  • Zhao, K., Chen, G., Shi, X.-M., Gao, T.-T., Li, W., Zhao, Y., Zhang, F.-Q., Wu, J., Cui, X., & Wang, Y.-F. (2012). Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PloS One, 7(12), 53314. DOI: 10.1371/journal.pone.0053314
  • Zhu, M., Wang, R., & Nie, G. (2014). Applications of nanomaterials as vaccine adjuvants. Human Vaccines & Immunotherapeutics, 10(9), 2761–2774. DOI: 10.4161/hv.29589

Nanopartiküler Aşılar

Yıl 2021, , 578 - 584, 31.12.2021
https://doi.org/10.35229/jaes.970713

Öz

Nanoteknoloji, 1-100 nm aralığında küçük bir ölçekte maddenin uygulamalı imalat ve manipülasyon bilimidir. Özellikle aşı biliminde nanoteknolojinin kullanımı son yıllarda hızla ortaya çıkmış ve “nanovasinoloji” nin doğmasına yol açmıştır. Nanoteknoloji, hücresel ve humoral bağışıklık tepkilerini artırma fırsatı sunan nano taşıyıcı tabanlı uygulama sistemleri sayesinde aşı gelişiminde gün geçtikçe daha da önemli bir rol oynamaktadır. Nanopartikül tabanlı aşı uygulamaları, aşıları erken bozulmaya karşı koruyabilmektedir, stabiliteyi arttırmaktadır ve iyi adjuvan özelliklerine sahiptir. NP'ler, çeşitli antijenlerin belirli dokulara ve organlara verilmesi için kullanılabilen, biyolojik olarak parçalanabilen, minimum toksisiteye sahip özellikleri ile geleneksel aşı yöntemlerine karşı etkili ve alternatif platformlar sağlamaktadır. Virüs benzeri partiküller, lipozomlar, ISCOM'lar, polimerik, inorganik nanopartiküller ve emülsiyonlar gibi ölçek dışı boyuttaki materyaller, hem aşı antijenlerini stabilize edebilen hem de adjuvan olarak işlev görebilen potansiyel dağıtım araçları olarak dikkat çekmektedir. Nanopartikül materyalinin bileşimi, nanopartiküllerin taşınması ve farmakokinetik özelliklerinde, salınım hızında ve hücresel alımda, biyolojik olarak parçalanabilirliğinde ve biyouyumlulukta önemli bir role sahiptir. Nanopartiküler aşıların, COVID-19 gibi hızla ortaya çıkan pandemilerde ve aşılama ile kontrol altına alınamayan kanserler dahil olmak üzere birçok hastalık için gelecekte aşı geliştirmeye rehberlik edebileceği düşünülmektedir. Bu derleme; nanopartiküllerin fiziksel özellikleri ve nanopartiküler aşı çeşitleri ile ilgili bilgiler sunmakta ve nanopartikül tabanlı aşı teknolojileri kullanılarak yapılan çalışmalara genel bir bakış sağlamaktadır.

Kaynakça

  • Alexyuk, P. G., Bogoyavlenskiy, A. P., Alexyuk, M. S., Turmagambetova, A. S., Zaitseva, I. A., Omirtaeva, E. S., & Berezin, V. E. (2019). Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Archives of Virology, 164(7), 1793–1803. DOI: 10.1007/s00705-019-04273-2
  • Altenburg, Arwen F., Kreijtz, J. H. C. M., de Vries, R. D., Song, F., Fux, R., Rimmelzwaan, G. F., Sutter, G., & Volz, A. (2014). Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses, 6(7), 2735–2761. DOI: 10.3390/v6072735
  • Borges, O., Cordeiro-da-Silva, A., Tavares, J., Santarém, N., de Sousa, A., Borchard, G., & Junginger, H. E. (2008). Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Für Pharmazeutische Verfahrenstechnik e.V, 69(2), 405–416. DOI: 10.1016/j.ejpb.2008.01.019
  • Chahal, J. S., Khan, O. F., Cooper, C. L., McPartlan, J. S., Tsosie, J. K., Tilley, L. D., Sidik, S. M., Lourido, S., Langer, R., Bavari, S., Ploegh, H. L., & Anderson, D. G. (2016). Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 4133-4142. DOI: 10.1073/pnas.1600299113
  • Chu, D., Gao, J., & Wang, Z. (2015). Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano, 9(12), 11800–11811. DOI: 10.1021/acsnano.5b05583
  • Cohen, A. A., Gnanapragasam, P. N. P., Lee, Y. E., Hoffman, P. R., Ou, S., Kakutani, L. M., … Bjorkman, P. J. (2021). Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science (New York, N.Y.), 371(6530), 735–741. DOI: 10.1126/science.abf6840
  • Das, I., Padhi, A., Mukherjee, S., Dash, D. P., Kar, S., & Sonawane, A. (2017). Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology, 28(16), 165101. DOI: 10.1088/1361-6528/aa60fd
  • Demento, S. L., Cui, W., Criscione, J. M., Stern, E., Tulipan, J., Kaech, S. M., & Fahmy, T. M. (2012). Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 33(19), 4957–4964. DOI: 10.1016/j.biomaterials.2012.03.041
  • Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B., & McNeil, S. E. (2008). Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Molecular Pharmaceutics, 5(4), 487–495. DOI: 10.1021/mp800032f
  • Feng, Ganzhu, Jiang, Q., Xia, M., Lu, Y., Qiu, W., Zhao, D., Lu, L., Peng, G., & Wang, Y. (2013). Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PloS One, 8(4), 61135. DOI: 10.1371/journal.pone.0061135
  • Foged, C., Brodin, B., Frokjaer, S., & Sundblad, A. (2005). Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. International Journal of Pharmaceutics, 298(2), 315–322. DOI: 10.1016/j.ijpharm.2005.03.035
  • Gao, Y., Wijewardhana, C., & Mann, J. F. S. (2018). Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Frontiers in Immunology, 9, 345. DOI: 10.3389/fimmu.2018.00345
  • Gregory, A. E., Williamson, E. D., Prior, J. L., Butcher, W. A., Thompson, I. J., Shaw, A. M., & Titball, R. W. (2012). Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine, 30(48), 6777–6782. DOI: 10.1016/j.vaccine.2012.09.021
  • Keller, S., Wilson, J. T., Patilea, G. I., Kern, H. B., Convertine, A. J., & Stayton, P. S. (2014). Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. Journal of Controlled Release: Official Journal of the Controlled Release Society, 191, 24–33. DOI: 10.1016/j.jconrel.2014.03.041
  • Kelly, H. G., Kent, S. J., & Wheatley, A. K. (2019). Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Review of Vaccines, 18(3), 269–280. DOI: 10.1080/14760584.2019.1578216
  • Kheirollahpour, M., Mehrabi, M., Dounighi, N. M., Mohammadi, M., & Masoudi, A. (2020). Nanoparticles and vaccine development. Pharmaceutical Nanotechnology, 8(1), 6–21. DOI: 10.2174/2211738507666191024162042
  • Kim, S. T., Saha, K., Kim, C., & Rotello, V. M. (2013). The role of surface functionality in determining nanoparticle cytotoxicity. Accounts of Chemical Research, 46(3), 681–691. DOI: 10.1021/ar3000647
  • Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology, 13(3), 159–175. DOI: 10.1038/nri3399
  • Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., & Zhou, Q. (2021). A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science, 7(4), 512–533. DOI: 10.1021/acscentsci.1c00120
  • Ma, X., Zou, F., Yu, F., Li, R., Yuan, Y., Zhang, Y., … Zhang, H. (2020). Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity, 53(6), 1315-1330.e9. DOI: 10.1016/j.immuni.2020.11.015
  • Manish, M., Rahi, A., Kaur, M., Bhatnagar, R., & Singh, S. (2013). A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PloS One, 8(4), e61885. DOI: 10.1371/journal.pone.0061885
  • Manolova, V., Flace, A., Bauer, M., Schwarz, K., Saudan, P., & Bachmann, M. F. (2008). Nanoparticles target distinct dendritic cell populations according to their size. European Journal of Immunology, 38(5), 1404–1413. DOI: 10.1002/eji.200737984
  • Moon, J. J., Suh, H., Bershteyn, A., Stephan, M. T., Liu, H., Huang, B., Sohail, M., Luo, S., Um, S. H., Khant, H., Goodwin, J. T., Ramos, J., Chiu, W., & Irvine, D. J. (2011). Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 10(3), 243–251. DOI: 10.1038/nmat2960
  • Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., Kawaguchi, A., Hasegawa, H., Kajino, K., Ninomiya, T., Ijiro, K., & Sawa, H. (2013). Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7(5), 3926–3938. DOI: 10.1021/nn3057005
  • O’Hagan, D. T. (2007). MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Review of Vaccines, 6(5), 699–710. DOI: 10.1586/14760584.6.5.699
  • Perisé-Barrios, A. J., Jiménez, Pereira de Oliveira, M., Garcion, E., Venisse, N., Benoit, J.-P., Couet, W., & Olivier, J.-C. (2005). Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharmaceutical Research, 22(11), 1898–1905. DOI: 10.1007/s11095-005-7147-6
  • Powell, A. E., Zhang, K., Sanyal, M., Tang, S., Weidenbacher, P. A., Li, S., … Kim, P. S. (2021). A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Central Science, 7(1), 183–199. DOI: 10.1021/acscentsci.0c01405
  • Prego, C., Paolicelli, P., Díaz, B., Vicente, S., Sánchez, A., González-Fernández, A., & Alonso, M. J. (2010). Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 28(14), 2607–2614. DOI: 10.1016/j.vaccine.2010.01.011
  • Reddy, S. T., van der Vlies, A. J., Simeoni, E., Angeli, V., Randolph, G. J., O’Neil, C. P., Lee, L. K., Swartz, M. A., & Hubbell, J. A. (2007). Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology, 25(10), 1159–1164. DOI: 10.1038/nbt1332
  • Ribeiro, A. M., Souza, A. C. O., Amaral, A. C., Vasconcelos, N. M., Jeronimo, M. S., Carneiro, F. P., Faccioli, L. H., Felipe, M. S. S., Silva, C. L., & Bocca, A. L. (2013). Nanobiotechnological approaches to delivery of DNA vaccine against fungal infection. Journal of Biomedical Nanotechnology, 9(2), 221–230. DOI: 10.1166/jbn.2013.1491
  • Shae, D., Postma, A., & Wilson, J. T. (2016). Vaccine delivery: where polymer chemistry meets immunology. Therapeutic Delivery, 7(4), 193–196. DOI: 10.4155/tde-2016-0008
  • Shah, P., Bhalodia, D., & Shelat, P. (2010). Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 1(1), 24. DOI:10.4103/0975-8453.59509
  • Tao, W., & Gill, H. S. (2015). M2e-immobilized gold nanoparticles as influenza A vaccine: Role of soluble M2e and longevity of protection. Vaccine, 33(20), 2307–2315. DOI: 10.1016/j.vaccine.2015.03.063
  • Temchura, V. V., Kozlova, D., Sokolova, V., Uberla, K., & Epple, M. (2014). Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen. Biomaterials, 35(23), 6098–6105. DOI: 10.1016/j.biomaterials.2014.04.010
  • Thomas, C., Rawat, A., Hope-Weeks, L., & Ahsan, F. (2011). Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Molecular Pharmaceutics, 8(2), 405–415. DOI: 10.1021/mp100255c
  • U.S. National Library of Medicine. (2021). Clinical Trials, Rockville Pike Bethesta, mD. https://clinicaltrials.gov/. (Temmuz 2021)
  • Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y., Wu, X., Ji, Y., Zhao, Y., Ma, L., Shao, Y., & Chen, C. (2012). Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Letters, 12(4), 2003–2012. DOI: 10.1021/nl300027p
  • Yu, M., Jambhrunkar, S., Thorn, P., Chen, J., Gu, W., & Yu, C. (2013). Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale, 5(1), 178–183. DOI: 10.1039/c2nr32145a
  • Zhao, K., Chen, G., Shi, X.-M., Gao, T.-T., Li, W., Zhao, Y., Zhang, F.-Q., Wu, J., Cui, X., & Wang, Y.-F. (2012). Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PloS One, 7(12), 53314. DOI: 10.1371/journal.pone.0053314
  • Zhu, M., Wang, R., & Nie, G. (2014). Applications of nanomaterials as vaccine adjuvants. Human Vaccines & Immunotherapeutics, 10(9), 2761–2774. DOI: 10.4161/hv.29589
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Evrim Dönmez 0000-0001-6436-7264

Hafize Tuğba Yüksel Dolgun 0000-0002-1125-5792

Şükrü Kırkan 0000-0001-5111-8656

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 13 Temmuz 2021
Kabul Tarihi 20 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Dönmez, E., Yüksel Dolgun, H. T., & Kırkan, Ş. (2021). Nanopartiküler Aşılar. Journal of Anatolian Environmental and Animal Sciences, 6(4), 578-584. https://doi.org/10.35229/jaes.970713


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS