Araştırma Makalesi
BibTex RIS Kaynak Göster

Artabel Gölleri (Gümüşhane) Sedimentlerinden İzole Edilen Aktinobakterilerin Antimikrobiyal Madde ve Endüstriyel Önemi Olan Enzimleri Üretme Kapasitelerinin Belirlenmesi

Yıl 2019, Cilt: 4 Sayı: 2, 166 - 173, 31.08.2019
https://doi.org/10.35229/jaes.561017

Öz

Kaynakça

  • Abdelmohsen, UR, Bayer K, Hentschel U., (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 31, 381–399.
  • Al-Askar AA., (2012). Microbiological studies on the in vitro inhibitory effect of Streptomyces collinus albescens against some phytopathogenic fungi. African Journal of Microbiology Research, 6, 3277-3283.
  • Azzeddine B, Abdelaziz M, Estelle C, Mouloud K, Nawel B, et al. (2013). Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-PNG23. Archives of Biological Sciences, 65, 549-558.
  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147.
  • Berdy J., (2005). Bioactive microbial metabolites. The Journal of Antibiotics,58, 1–2.
  • Bhat M., (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advences, 18, 355-383.
  • Bondarczuk K, Piotrowska-Seget Z., (2019). Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Science of The Total Environment, 650(2), 2951-2961.
  • Calvillo-Medina RP, Reyes-Grajeda JP, Moreno-Andrade VD, Barba-Escoto L, Bautistade Lucio V, Jones GH, Campos-Guillén J., (2019). Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). Microbiology Resource Announcements, 8, e01636-18.
  • Chen CY, Huang YC, Wei CM, Meng M, Liu WH, Yang CH., (2013). Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express, 3, 1-9.
  • Cragg GM, Newman DJ., (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology,100, 72–9.
  • Das P, Solanki R, Khanna M., (2014). Isolation and screening of cellulolytic actinomycetes from diverse habitats. International Journal of Advanced Biotechnology and Research, l5(3), 438-451.
  • DeBoer W, Folman LB, Summerbell RC, Boddy L., (2005). Living in an fungal world: impact of fungi on soil bacterial niche developement. FEMS Microbiology Reviews, 29, 795-811.
  • de-Souza WR., (2013). “Microbial degradation of lignocellulosic biomass,”in Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, A. Chandel, Ed., InTech.
  • Fossi BT, Tavea F, Jiwoua C, Ndjouenke R., 2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal of Microbiology Research, 3(9), 504-514.
  • Gohel SD, Singh SP., (2012). Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salttolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 889, 61-68.
  • Goodfellow M, Williams S., (1983). Ecology of actinomycetes. Annu Rev Microbial. 37, 189–216.
  • Gupta P, Samant K, Sahu A., (2012). Isolation of cellulosedegrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology, 2012, 5 pages.
  • Ibrahim NA, El-Shafei HA, Abdel-Aziz MS, Ghaly MF, Eid BM, Hamed AA., (2012). The potential use of alkaline protease from Streptomyces albidoflavus as an eco-friendly wool modifier. The Journal of the Textile Institute, 103, 49-498.
  • Janaki T, Nayak BK, Ganesan T., (2016). Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. Journal of Medicinal Plants Research, 4, 05-08.
  • Kekuda P, Shobha K, Onkarappa R., (2010). Fascinating diversity and potent biological activities of Actinomycete metabolites. Journal of Pharmacy Research, 3, 250–256.
  • Kim SK., (2016). Marine Enzymes Biotechnology: Production and Industrial Applications. Academic Press, Busan, 78, 608-739.
  • Kumar R, Showkat AL, Sajad A, Sasmita P, Nitu K, Devendra K, Priyanka N., (2013). Cellulolytic activity of actinomycetes isolated from Areraj region, Bihar. International journal of current discoveries and innovations, 2, 92-96.
  • Manivasagan P, Gnanam S, Sivakumar K, Thangaradjou T, Vijayalakshmi S, Balasubramanian T., (2010). Isolation, identification and characterization of multiple enzyme producing actinobacteria from sediment samples of Kodiyakarai coast, the Bay of Bengal. African Journal of Microbiology Research, 4, 1550-1559.
  • Mann J., (2001). Natural products as immunosuppressive agents. Natural Product Reports, 18, 417–30.
  • Mohamedin AH., (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration and Biodegradation, 43, 13-21.
  • Mohan GM, Charya MAS., (2012). Enzymatic activity of freshwater actinomycetes. International Research Journal of Pharmacy, 3, 193-197.
  • Mojsov K., (2012). Microbial cellulases and their applications in textile processing. International Journal of Marketing and Technology, 2, 12-29.
  • Nagaraju EV, Divakar G., (2013). Screening and Isolation of Pectinase producing Bacteria from Various Regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4 (1), 151-154.
  • Naikpatil SV, Rathod JL., (2011). Selective isolation and antimicrobial activity of rare actinomycetes from mangrove sediment of Karwar. Journal of Ecobiotechnology, 3(10), 48-53.
  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR., (1998). Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek, 74, 119–32.
  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimara CT, Schaffert RE, Sa NMH., (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41, 1782–1787.
  • Özcan K, Aksoy SÇ, Kalkan O, Uzel A, Hames-Kocabas EE, Bedir E., (2013). Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils and Sediments, 13(8), 1493-1501.
  • Özcan K, Çorbacı C., (2017). Streptomyces sp. K22 ve K30 Suşlarından Lipaz ve Proteaz Enzim Üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2), 128-135.
  • Özcan K, Uzel A, Bedir E., (2015). Anti-Microbial Activity of Chloramphenicol from Streptomyces sp.10CM9, Procedia - Social and Behavioral Sciences, 195, 1736-1739.
  • Passari AK, Yadav MK, Singh BP., (2018). In vitro evaluation of antimicrobial activities and antibiotic susceptibility profiling of culturable actinobacteria from fresh water streams. Indian Journal of Experimental Biology, 56, 665-673.
  • Pecznska-Czoch W & Mordarski M., (1988). Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M, editors. Actinomycetes in Biotechnology. London:Academic, 219–83.
  • Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M., 2013. Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource. Hindawi Publishing Corporation Bio Med Research International, 1-8.
  • Priya CS, Jagannathanv N, Kalaichelvan PT., (2011). Production of chitinase by Streptomyces hygroscopicus VMCH2 by optimisation of cultural conditions. International Journal of Pharmacy and Biological Sciences, 2, 210-219.
  • Priyadharsini P, Dhanasekaran D., (2015). Diversity of soil allelopathic Actinobacteria in Tiruchirappalli district, Tamilnadu, India. Journal of the Saudi Society of Agricultural Sciences, 14, 54-60.
  • Ramakrishnan J, Narayanan M., (2013). Studies on xylanase producing thermophilic Streptomyces sp from compost soil. International Journal of Pharm Tech Research, 5, 1386-1392.
  • Rapp P, Backhaus S., (1992). Formation of extracellular lipase by filamentous fungi, yeasts and bacteria. Enzyme and Microbial Technology, 14, 938-943.
  • Selvameenal L, Radhakrishnan M, Balagurunathan R., (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical Sciences, 71(5), 499–504.
  • Sharma M., (2014). Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3, 801-832.
  • Shigeri Y, Matsui T, Watanable K., (2009). Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage- Treatment process. Bioscience, Biotechnology, and Biochemistry, 73, 2519- 2521.
  • Solanki R, Khanna M, Lal R., (2008). Review article entitled -Bioactive compounds from marine actinomycetes. Indian Journal of Microbiology, 48, 410-431. Solanki R, Lal R, Khanna M., (2011). Antimicrobial activities of actinomycetes from diverse ecological habitats in Delhi and its adjoining states. Indian Journal of Microbial World, 13, 233-240.
  • Strohl WR., (2004). Antimicrobials. In: Bull AT, editor. Microbial Diversity and Bioprospecting. USA: ASM Press, 336–55.
  • Sukumaran RK, Singhania RR, Pandey A., (2005). “Microbial cellulases-production, applications and challenges,” Journal of Scientific and Industrial Research, 64 (11), 832–844.
  • Tan GY, Ward AC, Goodfellow M., (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569.
  • Terkina IA, Parfenova VV, Ahn TS., (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173-176.
  • Vimal V, Rajan BM, Kannabiran K., (2009). Antimicrobial activity of marine actinomycete, Nocardiopsis sp. VITSVK5(FJ973467). Asian Journal of Medical Sciences,2,57-63.
  • Waksman AS., (1989). Actinomycetes. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi 89, İzmir, 328s.

Determination of Capacity of Actinobacteria Isolated From Artabel Lakes (Gümüşhane) Sediment to Produce Antimicrobial Agents and Enzymes of Industrial Importance

Yıl 2019, Cilt: 4 Sayı: 2, 166 - 173, 31.08.2019
https://doi.org/10.35229/jaes.561017

Öz

Bu çalışmada,
Artabel göllerinden alınan sediment örneklerinden aktinobakteri izolasyonu
gerçekleştirilmiş ve izolatların antimikrobiyal ve enzim üretme kapasiteleri
araştırılmıştır. 5 farklı göl sedimentinden SCA, R2A, M6, SM3, AİA ve M1
besiyerileri kullanılarak toplamda 48 izolat elde edilmiştir. İzolatların, çapraz
çizgi ekim ile antimikrobiyal aktivitesi, uygun besiyeriler kullanılarak
hazırlanan petrilerde ise lipaz, amilaz, proteaz, pektinaz ve selülaz üzerine
enzim üretim kapasiteleri belirlenmiştir. Tarama sonucunda, izolatların %79,2’i
antimikrobiyal aktivite, %85,4’ü ise enzim aktivitesi sergilerken %8,3’ünde
herhangi bir aktiviteye rastlanmamıştır. Antimikrobiyal aktivite yoğun olarak C. albicans (%64,6) üzerine
gerçekleşirken, S. thyphymurium’a
karşı aktivite tespit edilmemiştir. İzolatlar en fazla amilaz enzimini üretme
eğilimine sahip bulunmuştur. Besiyeri ve aktif izolatlar arasındaki bağlantı
incelendiğinde, SCA besiyeri en fazla aktinobakterinin izole edildiği besiyeri
olurken C. albicans inhibisyonu
yüksek olan izolatların elde edilmesini de sağlamıştır. Bu çalışmada, M6 ve SCA
enzim üretimi, M1 ise antimikrobiyal aktivite taramalarında aktif izolatların
elde edilmesi bakımından en etkili besiyeriler olarak tespit edilmiştir. Sonuç
olarak Artabel göllerinden elde edilen aktinobakterilerin geniş spektrumda
antimikrobiyal ve enzim üretim kapasitesine sahip olduğu bulunmuştur. Bu
özellikleri nedeniyle endüstriyel veya farmakolojik öneme sahip bileşiklerin
eldesinde kaynak olarak kullanılma potansiyeline sahip oldukları
düşünülmektedir.

Kaynakça

  • Abdelmohsen, UR, Bayer K, Hentschel U., (2014). Diversity, abundance and natural products of marine sponge-associated actinomycetes. Natural Product Reports, 31, 381–399.
  • Al-Askar AA., (2012). Microbiological studies on the in vitro inhibitory effect of Streptomyces collinus albescens against some phytopathogenic fungi. African Journal of Microbiology Research, 6, 3277-3283.
  • Azzeddine B, Abdelaziz M, Estelle C, Mouloud K, Nawel B, et al. (2013). Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-PNG23. Archives of Biological Sciences, 65, 549-558.
  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141-147.
  • Berdy J., (2005). Bioactive microbial metabolites. The Journal of Antibiotics,58, 1–2.
  • Bhat M., (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advences, 18, 355-383.
  • Bondarczuk K, Piotrowska-Seget Z., (2019). Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Science of The Total Environment, 650(2), 2951-2961.
  • Calvillo-Medina RP, Reyes-Grajeda JP, Moreno-Andrade VD, Barba-Escoto L, Bautistade Lucio V, Jones GH, Campos-Guillén J., (2019). Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). Microbiology Resource Announcements, 8, e01636-18.
  • Chen CY, Huang YC, Wei CM, Meng M, Liu WH, Yang CH., (2013). Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express, 3, 1-9.
  • Cragg GM, Newman DJ., (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology,100, 72–9.
  • Das P, Solanki R, Khanna M., (2014). Isolation and screening of cellulolytic actinomycetes from diverse habitats. International Journal of Advanced Biotechnology and Research, l5(3), 438-451.
  • DeBoer W, Folman LB, Summerbell RC, Boddy L., (2005). Living in an fungal world: impact of fungi on soil bacterial niche developement. FEMS Microbiology Reviews, 29, 795-811.
  • de-Souza WR., (2013). “Microbial degradation of lignocellulosic biomass,”in Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, A. Chandel, Ed., InTech.
  • Fossi BT, Tavea F, Jiwoua C, Ndjouenke R., 2009). Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. African Journal of Microbiology Research, 3(9), 504-514.
  • Gohel SD, Singh SP., (2012). Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salttolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 889, 61-68.
  • Goodfellow M, Williams S., (1983). Ecology of actinomycetes. Annu Rev Microbial. 37, 189–216.
  • Gupta P, Samant K, Sahu A., (2012). Isolation of cellulosedegrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology, 2012, 5 pages.
  • Ibrahim NA, El-Shafei HA, Abdel-Aziz MS, Ghaly MF, Eid BM, Hamed AA., (2012). The potential use of alkaline protease from Streptomyces albidoflavus as an eco-friendly wool modifier. The Journal of the Textile Institute, 103, 49-498.
  • Janaki T, Nayak BK, Ganesan T., (2016). Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. Journal of Medicinal Plants Research, 4, 05-08.
  • Kekuda P, Shobha K, Onkarappa R., (2010). Fascinating diversity and potent biological activities of Actinomycete metabolites. Journal of Pharmacy Research, 3, 250–256.
  • Kim SK., (2016). Marine Enzymes Biotechnology: Production and Industrial Applications. Academic Press, Busan, 78, 608-739.
  • Kumar R, Showkat AL, Sajad A, Sasmita P, Nitu K, Devendra K, Priyanka N., (2013). Cellulolytic activity of actinomycetes isolated from Areraj region, Bihar. International journal of current discoveries and innovations, 2, 92-96.
  • Manivasagan P, Gnanam S, Sivakumar K, Thangaradjou T, Vijayalakshmi S, Balasubramanian T., (2010). Isolation, identification and characterization of multiple enzyme producing actinobacteria from sediment samples of Kodiyakarai coast, the Bay of Bengal. African Journal of Microbiology Research, 4, 1550-1559.
  • Mann J., (2001). Natural products as immunosuppressive agents. Natural Product Reports, 18, 417–30.
  • Mohamedin AH., (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. International Biodeterioration and Biodegradation, 43, 13-21.
  • Mohan GM, Charya MAS., (2012). Enzymatic activity of freshwater actinomycetes. International Research Journal of Pharmacy, 3, 193-197.
  • Mojsov K., (2012). Microbial cellulases and their applications in textile processing. International Journal of Marketing and Technology, 2, 12-29.
  • Nagaraju EV, Divakar G., (2013). Screening and Isolation of Pectinase producing Bacteria from Various Regions in Bangalore. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4 (1), 151-154.
  • Naikpatil SV, Rathod JL., (2011). Selective isolation and antimicrobial activity of rare actinomycetes from mangrove sediment of Karwar. Journal of Ecobiotechnology, 3(10), 48-53.
  • Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR., (1998). Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Van Leeuwenhoek, 74, 119–32.
  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimara CT, Schaffert RE, Sa NMH., (2009). Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 41, 1782–1787.
  • Özcan K, Aksoy SÇ, Kalkan O, Uzel A, Hames-Kocabas EE, Bedir E., (2013). Diversity and antibiotic-producing potential of cultivable marine-derived actinomycetes from coastal sediments of Turkey. Journal of Soils and Sediments, 13(8), 1493-1501.
  • Özcan K, Çorbacı C., (2017). Streptomyces sp. K22 ve K30 Suşlarından Lipaz ve Proteaz Enzim Üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2), 128-135.
  • Özcan K, Uzel A, Bedir E., (2015). Anti-Microbial Activity of Chloramphenicol from Streptomyces sp.10CM9, Procedia - Social and Behavioral Sciences, 195, 1736-1739.
  • Passari AK, Yadav MK, Singh BP., (2018). In vitro evaluation of antimicrobial activities and antibiotic susceptibility profiling of culturable actinobacteria from fresh water streams. Indian Journal of Experimental Biology, 56, 665-673.
  • Pecznska-Czoch W & Mordarski M., (1988). Actinomycete enzymes. In: Goodfellow M, Williams ST, Mordarski M, editors. Actinomycetes in Biotechnology. London:Academic, 219–83.
  • Prakash D, Nawani N, Prakash M, Bodas M, Mandal A, Khetmalas M., 2013. Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource. Hindawi Publishing Corporation Bio Med Research International, 1-8.
  • Priya CS, Jagannathanv N, Kalaichelvan PT., (2011). Production of chitinase by Streptomyces hygroscopicus VMCH2 by optimisation of cultural conditions. International Journal of Pharmacy and Biological Sciences, 2, 210-219.
  • Priyadharsini P, Dhanasekaran D., (2015). Diversity of soil allelopathic Actinobacteria in Tiruchirappalli district, Tamilnadu, India. Journal of the Saudi Society of Agricultural Sciences, 14, 54-60.
  • Ramakrishnan J, Narayanan M., (2013). Studies on xylanase producing thermophilic Streptomyces sp from compost soil. International Journal of Pharm Tech Research, 5, 1386-1392.
  • Rapp P, Backhaus S., (1992). Formation of extracellular lipase by filamentous fungi, yeasts and bacteria. Enzyme and Microbial Technology, 14, 938-943.
  • Selvameenal L, Radhakrishnan M, Balagurunathan R., (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical Sciences, 71(5), 499–504.
  • Sharma M., (2014). Actinomycetes: source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3, 801-832.
  • Shigeri Y, Matsui T, Watanable K., (2009). Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage- Treatment process. Bioscience, Biotechnology, and Biochemistry, 73, 2519- 2521.
  • Solanki R, Khanna M, Lal R., (2008). Review article entitled -Bioactive compounds from marine actinomycetes. Indian Journal of Microbiology, 48, 410-431. Solanki R, Lal R, Khanna M., (2011). Antimicrobial activities of actinomycetes from diverse ecological habitats in Delhi and its adjoining states. Indian Journal of Microbial World, 13, 233-240.
  • Strohl WR., (2004). Antimicrobials. In: Bull AT, editor. Microbial Diversity and Bioprospecting. USA: ASM Press, 336–55.
  • Sukumaran RK, Singhania RR, Pandey A., (2005). “Microbial cellulases-production, applications and challenges,” Journal of Scientific and Industrial Research, 64 (11), 832–844.
  • Tan GY, Ward AC, Goodfellow M., (2006). Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Systematic and Applied Microbiology, 29(7), 557-569.
  • Terkina IA, Parfenova VV, Ahn TS., (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173-176.
  • Vimal V, Rajan BM, Kannabiran K., (2009). Antimicrobial activity of marine actinomycete, Nocardiopsis sp. VITSVK5(FJ973467). Asian Journal of Medical Sciences,2,57-63.
  • Waksman AS., (1989). Actinomycetes. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi 89, İzmir, 328s.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Kadriye Özcan 0000-0002-4913-6035

Yayımlanma Tarihi 31 Ağustos 2019
Gönderilme Tarihi 6 Mayıs 2019
Kabul Tarihi 13 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 2

Kaynak Göster

APA Özcan, K. (2019). Artabel Gölleri (Gümüşhane) Sedimentlerinden İzole Edilen Aktinobakterilerin Antimikrobiyal Madde ve Endüstriyel Önemi Olan Enzimleri Üretme Kapasitelerinin Belirlenmesi. Journal of Anatolian Environmental and Animal Sciences, 4(2), 166-173. https://doi.org/10.35229/jaes.561017


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg