Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 5 Sayı: 3, 318 - 324, 30.09.2020
https://doi.org/10.35229/jaes.749925

Öz

Kaynakça

  • Anonymus (APHA) (1998). Standard Methods for the examination of water and waste water, American Public Health Association Port City Press, Baltimore, 874 pp.
  • Anova (2017). IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp
  • Barreiros, L., Peres, J., Azevedo, N.F. Manaia,C.M. & Nunes, O.C. (2012). Environmental factors influencing molinate biodegradation by a two-member mixed culture in rice paddy field floodwater. International Biodeterioration & Biodegradation, 72, 52-58.
  • Beutler, E., Gelbart, T. & Kuhl, W. (1990). Interference of Heparin with The Polymerase Chain Reaction. Biotechniques, 9, 166pp.
  • Belal, B.E. & Mohamed, F.E.N. (2013). Bioremediation of pendimethalin contaminated soil. African Journal of Microbiology Research, 7(21), 2574–2588.
  • Campo, J., A. Masiá, Blasco, C. & Picó, Y. (2013). Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean river basins. Journal of Hazardous Materials, 263, 146-157.
  • Castillo, J.M., Beguet, J. Martin-Laurent, F. & Romero, E. (2016). Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. Journal of Hazardous Materials, 304, 79-387.
  • Castillo, M.D.P., Torstensson, L. & Stenström, J. (2008). Biobeds for environmental protection from pesticide use – a review. Journal of Agricultural and Food Chemistry, 56(15), 6206-6219. Chowdhury, A., Pradhan,S. Saha, M. & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114-127.
  • Cycon, M, & Piotrowska-Seget, Z. (2009). Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology, 18(5), 632-42.
  • Dhanya, M.S. (2014). Advances in microbial biodegradation of chlorpyrifos. Journal of Environmental Research And Development, 9, 232-240.
  • Diao, X.P., Sun, Y.J. Sun, Z.J. & Shen, J.Z (2005). Effects of sulfamethazine on microbial activity in different types of soil. Journal of Agro-Environment Science, 24(3), 694-699.
  • Diaz, J.M.C., Moreno, L.D. Núñez, R. Nogales, R. & Romero, E. (2016). Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresource Technology, 214, 234-241.
  • Ergüven, G.Ö., Bayhan, H. Ikizoglu, B., Kanat, G. & Göksel, D. (2016). Removal Rate Of Herbicide Aclonıfen Wıth Isolated Bacteria and Fungı. Applied Ecology and Environmental Research, 14(2), 351-365.
  • Erguven, G.O., Yildirim, N. & Adar, E. (2017). The ability of Phanerochaete chrysosporium (ME446) on chemical oxygen demand remediation in submerged culture medium supplemented with malathion insecticide. Desalination and Water Treatment, 94, 231–235.
  • Erguven, G.O. (2018). Comparison of Some Soil Fungi in Bioremediation of Herbicide Acetochlor Under Agitated Culture Media. Bulletin of Environmental Contamination and Toxicology, 100, 570-575.
  • Erguven, G.O. (2019). Bacillus subtilis Bakterisi ile Metribuzin Herbisitinin Biyoıslahının Yapay Tarla Düzeneğinde Araştırılması. International Journal of Pure and Applied Sciences, 5(1), 46-52.
  • Gorla, P., Pandey, J.P. Parthasarathy, S. Merrick, M. & Siddavatam, D. (2009). Organophosphate hydrolase in Brevundimonas diminuta is targeted to the periplasmic face of the inner membrane by the twin arginine translocation pathway. Journal of Bacteriology, 191, 6292-6299.
  • Harry, W.S, Paul, J.V. & John, J.L.E. (1990). Microbes in Action: A Laboratory Manual of Microbiology. 4th Edition. Publisher: W. H. Freeman; ASIN: B010WEO52C, McMillan Learning, New York City, United States.
  • Johnson, J.L. (1994). Similarity analysis of rRNA pp. 683-700. In: R.G. Gerhard, Murray, W.A. Wood, N.R. Krieg (Eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology. Washington DC.
  • Latifi, A.M., Khodi, S. Mirzaei, M., Miresmaeilli, M. & Babavalian, H. (2012). Isolation and characterization of five chlorpyrifos degrading bacteria. African Journal of Biotechnology, 11, 3140-3146.
  • Maya, K. & Singh, R.S. (2011). S.N. Upadhyay and S.K. Dubey, Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP Process. Biochemistry, 46, 2130–2136. Murthy H.M & Manonmani, HK., (2007). Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. Journal of Hazardous Materials, 149(1), 18-25.
  • Nikel, P.I., Martínez-García, E. & De Lorenzo, V. (2014). Biotechnological domestication of pseudomonads using synthetic biology. Nature Reviews Microbiology, 12(5), 368-379.
  • Ortiz-Hernández, M.L. & Sánchez-Salinas, E. (2010). Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental, 26, 27-38.
  • Pakala, S.B., Gorla, P. Pinjari, A.B. Krovidi, R.K. Baru, R. Yanamandra, M. Merrick, M. & Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a gram-negative Serratia sp. strain DS001. Applied Microbiology and Biotechnology, 73, 1452-1462.
  • Saha, P. & Chakrabarti, T. (2006). Emticicia oligorophica gen nov. a new member of the family Flexibacteraceae, phylum Bacteroidetes. 2006. International Journal of Systematic and Evolutionary Microbiology, 56, 991-995.
  • Sebastian, D.J., Nissen, S.J., Sebastian, J.R. & Beck, K.G. (2017) Seed bank depletion: the key to long-term downy brome (Bromus tectorum L.) management. Rangeland Ecology & Management, 70, 477–483.
  • Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment, 123/124, 63-76.
  • Shen, Y.J., Lu, P., Mei, H., Yu, H.J., Hong, Q. & Li, S.P. (2010). Isolation of a methyl parathion- degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation, 21, 785-792
  • Siddaramppa, R., Rajaram, K.P. & Sethunathan, N. (1973). Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiology, 26, 846-849.
  • Sreenivasulu, C. & Aparna, Y. (2001). Bioremediation of methyl parathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67, 98-105.
  • Tompkins, J. (2010). Environmental Protection Agency Pesticide Fact Sheet: Indaziflam. http://www.epa.gov/opprd001/factsheets/indaziflam.pdf. Erişim: Nisan 16, 2019.
  • Trasar-cepeda, C., Leiros, M.C. Seoane, S. & Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry, 32, 1867-1875.
  • Travers, R. S., Martin, P. A. W. & Reichelderfer, C. F. (1987). Selective Process for Efficient İsolation of Soil Bacillus Sp. Applied and Environmental Microbiology, 53, 1263–1266.
  • Yang, L., Li, X., Li, X., Su, Z., Zhanga, C. & Zhang, H. (2014). Bioremediation of chlorimuron- ethylcontaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process. Journal of Hazardous Materials, 274, 314–321.
  • Yong, Y.C., & Zhong, J.J. (2010). Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 45, 1937–1943.

Sphingomonas melonis ve Bacillus muralis’in İndaziflam Herbisiti Üzerinde Biyoparçalanma Performansı

Yıl 2020, Cilt: 5 Sayı: 3, 318 - 324, 30.09.2020
https://doi.org/10.35229/jaes.749925

Öz

Bu çalışmada, toprak bakterileri olan Sphingomonas melonis (Sm) ve Bacillus muralis'in (Bm) farklı indaziflam herbisiti konsantrasyonlarında (100, 150 ve 200 ppm) biyodegradasyon performansı 250C'ta kültür koşullarında önemli çevresel parametreler ile birlikte. S.m bakterisi Türkiye'nin Adana ilindeki pamuk tarımı yapılan tarımsal alandan izole edilirken, B.m Kırklareli bölgesinde ayçiçeği tarlasından izole edilmiştir. Çalışma sonucunda; S.m için en etkili biyoparçalanma oranı 6 günde BOİ5 ve KOİ için sırasıyla %83 ve 73 iken TOK giderim oranları %70’tir. B.m için en etkili biyoparçalanma oranı KOİ ve BOİ5 parametrelerinde 5 günde 100 ppm’de %91 ve 84 iken TOK giderim oranı aynı zaman zarfında %77’dir. S.m ve B.m’ de 5. ve 6. günlerin sonunda popülasyon dinamiği sonuçlarına göre bulanıklığın artması bu parametreler ile biyoremediasyon sonuçlarını doğrulamaktadır. Bu sonuçlar göstermiştir ki S.m ve B.m indaziflam remediasyonunda etkili KOİ, TOK ve BOİ5 gideriminde kullanılabilir.

Kaynakça

  • Anonymus (APHA) (1998). Standard Methods for the examination of water and waste water, American Public Health Association Port City Press, Baltimore, 874 pp.
  • Anova (2017). IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp
  • Barreiros, L., Peres, J., Azevedo, N.F. Manaia,C.M. & Nunes, O.C. (2012). Environmental factors influencing molinate biodegradation by a two-member mixed culture in rice paddy field floodwater. International Biodeterioration & Biodegradation, 72, 52-58.
  • Beutler, E., Gelbart, T. & Kuhl, W. (1990). Interference of Heparin with The Polymerase Chain Reaction. Biotechniques, 9, 166pp.
  • Belal, B.E. & Mohamed, F.E.N. (2013). Bioremediation of pendimethalin contaminated soil. African Journal of Microbiology Research, 7(21), 2574–2588.
  • Campo, J., A. Masiá, Blasco, C. & Picó, Y. (2013). Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean river basins. Journal of Hazardous Materials, 263, 146-157.
  • Castillo, J.M., Beguet, J. Martin-Laurent, F. & Romero, E. (2016). Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. Journal of Hazardous Materials, 304, 79-387.
  • Castillo, M.D.P., Torstensson, L. & Stenström, J. (2008). Biobeds for environmental protection from pesticide use – a review. Journal of Agricultural and Food Chemistry, 56(15), 6206-6219. Chowdhury, A., Pradhan,S. Saha, M. & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114-127.
  • Cycon, M, & Piotrowska-Seget, Z. (2009). Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicology, 18(5), 632-42.
  • Dhanya, M.S. (2014). Advances in microbial biodegradation of chlorpyrifos. Journal of Environmental Research And Development, 9, 232-240.
  • Diao, X.P., Sun, Y.J. Sun, Z.J. & Shen, J.Z (2005). Effects of sulfamethazine on microbial activity in different types of soil. Journal of Agro-Environment Science, 24(3), 694-699.
  • Diaz, J.M.C., Moreno, L.D. Núñez, R. Nogales, R. & Romero, E. (2016). Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts. Bioresource Technology, 214, 234-241.
  • Ergüven, G.Ö., Bayhan, H. Ikizoglu, B., Kanat, G. & Göksel, D. (2016). Removal Rate Of Herbicide Aclonıfen Wıth Isolated Bacteria and Fungı. Applied Ecology and Environmental Research, 14(2), 351-365.
  • Erguven, G.O., Yildirim, N. & Adar, E. (2017). The ability of Phanerochaete chrysosporium (ME446) on chemical oxygen demand remediation in submerged culture medium supplemented with malathion insecticide. Desalination and Water Treatment, 94, 231–235.
  • Erguven, G.O. (2018). Comparison of Some Soil Fungi in Bioremediation of Herbicide Acetochlor Under Agitated Culture Media. Bulletin of Environmental Contamination and Toxicology, 100, 570-575.
  • Erguven, G.O. (2019). Bacillus subtilis Bakterisi ile Metribuzin Herbisitinin Biyoıslahının Yapay Tarla Düzeneğinde Araştırılması. International Journal of Pure and Applied Sciences, 5(1), 46-52.
  • Gorla, P., Pandey, J.P. Parthasarathy, S. Merrick, M. & Siddavatam, D. (2009). Organophosphate hydrolase in Brevundimonas diminuta is targeted to the periplasmic face of the inner membrane by the twin arginine translocation pathway. Journal of Bacteriology, 191, 6292-6299.
  • Harry, W.S, Paul, J.V. & John, J.L.E. (1990). Microbes in Action: A Laboratory Manual of Microbiology. 4th Edition. Publisher: W. H. Freeman; ASIN: B010WEO52C, McMillan Learning, New York City, United States.
  • Johnson, J.L. (1994). Similarity analysis of rRNA pp. 683-700. In: R.G. Gerhard, Murray, W.A. Wood, N.R. Krieg (Eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology. Washington DC.
  • Latifi, A.M., Khodi, S. Mirzaei, M., Miresmaeilli, M. & Babavalian, H. (2012). Isolation and characterization of five chlorpyrifos degrading bacteria. African Journal of Biotechnology, 11, 3140-3146.
  • Maya, K. & Singh, R.S. (2011). S.N. Upadhyay and S.K. Dubey, Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP Process. Biochemistry, 46, 2130–2136. Murthy H.M & Manonmani, HK., (2007). Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. Journal of Hazardous Materials, 149(1), 18-25.
  • Nikel, P.I., Martínez-García, E. & De Lorenzo, V. (2014). Biotechnological domestication of pseudomonads using synthetic biology. Nature Reviews Microbiology, 12(5), 368-379.
  • Ortiz-Hernández, M.L. & Sánchez-Salinas, E. (2010). Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental, 26, 27-38.
  • Pakala, S.B., Gorla, P. Pinjari, A.B. Krovidi, R.K. Baru, R. Yanamandra, M. Merrick, M. & Siddavattam, D. (2007). Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a gram-negative Serratia sp. strain DS001. Applied Microbiology and Biotechnology, 73, 1452-1462.
  • Saha, P. & Chakrabarti, T. (2006). Emticicia oligorophica gen nov. a new member of the family Flexibacteraceae, phylum Bacteroidetes. 2006. International Journal of Systematic and Evolutionary Microbiology, 56, 991-995.
  • Sebastian, D.J., Nissen, S.J., Sebastian, J.R. & Beck, K.G. (2017) Seed bank depletion: the key to long-term downy brome (Bromus tectorum L.) management. Rangeland Ecology & Management, 70, 477–483.
  • Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment, 123/124, 63-76.
  • Shen, Y.J., Lu, P., Mei, H., Yu, H.J., Hong, Q. & Li, S.P. (2010). Isolation of a methyl parathion- degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation, 21, 785-792
  • Siddaramppa, R., Rajaram, K.P. & Sethunathan, N. (1973). Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiology, 26, 846-849.
  • Sreenivasulu, C. & Aparna, Y. (2001). Bioremediation of methyl parathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67, 98-105.
  • Tompkins, J. (2010). Environmental Protection Agency Pesticide Fact Sheet: Indaziflam. http://www.epa.gov/opprd001/factsheets/indaziflam.pdf. Erişim: Nisan 16, 2019.
  • Trasar-cepeda, C., Leiros, M.C. Seoane, S. & Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry, 32, 1867-1875.
  • Travers, R. S., Martin, P. A. W. & Reichelderfer, C. F. (1987). Selective Process for Efficient İsolation of Soil Bacillus Sp. Applied and Environmental Microbiology, 53, 1263–1266.
  • Yang, L., Li, X., Li, X., Su, Z., Zhanga, C. & Zhang, H. (2014). Bioremediation of chlorimuron- ethylcontaminated soil by Hansschlegelia sp. strain CHL1 and the changes of indigenous microbial population and N-cycling function genes during the bioremediation process. Journal of Hazardous Materials, 274, 314–321.
  • Yong, Y.C., & Zhong, J.J. (2010). Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochemistry, 45, 1937–1943.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Gokhan Erguven 0000-0003-1573-080X

Gürdal Kanat 0000-0003-2600-2912

Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 9 Haziran 2020
Kabul Tarihi 18 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

APA Erguven, G., & Kanat, G. (2020). Sphingomonas melonis ve Bacillus muralis’in İndaziflam Herbisiti Üzerinde Biyoparçalanma Performansı. Journal of Anatolian Environmental and Animal Sciences, 5(3), 318-324. https://doi.org/10.35229/jaes.749925


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg