Araştırma Makalesi
BibTex RIS Kaynak Göster

YAŞLANDIRMA SONRASI KAYIN ODUNUNDA ÇÜRÜME ETKİSİ

Yıl 2020, Cilt: 5 Sayı: 5, 882 - 885, 31.12.2020
https://doi.org/10.35229/jaes.837653

Öz

Ahşap, dış mekan uygulamalarında foto degredasyona karşı hassastır ve yüzeyinde mikro veya makro çatlaklar, renk değişiklikleri gibi deformasyonlar meydana gelir. Özellikle çatlaklar, ahşap malzemeyi biyotik saldırılara karşı daha savunmasız hale getirir. Bu çalışmada, doğal ve hızlandırılmış UV yaşlandırma testi uygulanmış kayın örneklerinin esmer (Coniophora puteana) ve beyaz çürüklük (Coriolus versicolor) mantar saldırılarına karşı dayanımı araştırılmıştır. Bu amaçla, 393 gün boyunca doğal dış ortam testi (NW) ve 1512 saat süreyle hızlandırılmış UV yaşlandırma testine (AW) maruz kalan kayın örnekleri, 2 ve 4 hafta boyunca agar ortamında çürüme testine tabi tutulmuştur. 2 haftalık bozunma testinden sonra, C. versicolor ile numunelerin ağırlık kaybı kontroller için %24.30, AW numuneleri için %13.29 ve NW numuneleri için %24.38 olarak bulunmuştur. C. puteana durumunda kontroller, AW örnekleri ve NW örnekleri için sırasıyla %21.15, %21.49 ve %30.61 olarak bulunmuştur. C. versicolor ile numunelerin ağırlık kaybı, 4 haftalık bozulma testinden sonra kontroller için %61.82, AW numuneleri için %30.72 ve NW numuneleri için %37.62 olarak bulunmuştur. C. puteana'nın 4 haftalık maruziyetiyle ağırlık kaybı, kontroller, AW örnekleri ve NW örnekleri için sırasıyla %21.43, %8.44 ve %37.67 olarak bulunmuştur. Doğal dış ortam testi, her iki mantar türü için hızlandırılmış yaşlandırma testinden daha fazla ağırlık kaybına neden olmuştur.

Proje Numarası

118O759

Kaynakça

  • ASTM G154. (2006). Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials, American Society for Testing and Materials.
  • ASTM G7. (2013). Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials.
  • Bari, E., Nazarnezhad, N., Kazemi, S. M., Ghanbary, M. A. T., Mohebby, B., Schmidt, O., and Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231-237.
  • Brischke, C., and Meyer-Veltrup, L. (2015). Moisture content and decay of differently sized wooden components during 5 years of outdoor exposure. European Journal of Wood and Wood Products, 73(6), 719-728.
  • Catto, A. L., Montagna, L. S., Almeida, S. H., Silveira, R. M., and Santana, R. M. (2016). Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration & Biodegradation, 109, 11-22.
  • Chow, P., and Bajwa, D. S. (1998). Weathering effects on the decay resistance of creosote-treated oak. In V: Ninety-fourth annual meeting of the American Wood-preservers' Association. Scottsdale, Arizona Vol. 94.
  • EN 113. (1997). Wood preservatives. Test method for determining the protective effectiveness against wood-destroying basidiomycetes. Determination of toxic values.
  • EN 927-3. (2003). Paints and varnishes - Coating materials and coating systems for exterior wood - Part 3: Natural weathering test.
  • Evans P.D. (2008): Weathering and photo-degradation of wood. In: Development of Wood Preservative Systems, ACS Washington DC, USA: 69–117.
  • George, B.; Suttie, E.; Merlin, A and Deglise, X. (2005). Photodegradation and photostabilisation of wood: The state of the art. Polym. Degrad. Stab. 88, 268–274.
  • Lionetto, F., Del Sole, R., Cannoletta, D., Vasapollo, G., and Maffezzoli, A. (2012). Monitoring wood degradation during weathering by cellulose crystallinity. Materials, 5(10), 1910-1922.
  • Metsa-Kortelainen, S., and Viitanen, H. (2017). Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Material Science & Engineering, 12(3), 129-139.
  • Panek, M., Reinprecht, L., and Hulla, M. (2014). Ten essential oils for beech wood protection-Efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources, 9(3), 5588-5603.
  • Reinprecht, L., and Grznárik, T. (2015). Biological durability of Scots pine (Pinus sylvestris L.) sapwood modified with selected organo-silanes. Wood Research, 60(5), 687-696.
  • Reinprecht, L., and Hulla, M. (2015). Colour changes of beech wood modified with essential oils due to fungal and ageing-fungal attacks with Coniophora puteana. Drewno: prace naukowe, doniesienia, komunikaty, 58.
  • Sudiyanni, Y., Imamura, Y., and Takahashi, M. (1996). Weathering effects on several properties of chemically modified wood. Wood Research Institute Kyoto University, 83: 55-58.
  • Tomak, E. D., Ustaomer, D., Ermeydan, M. A.,and Yildiz, S. (2018). An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement, 127, 187-197.
  • Xie, Y.; Krause, A.; Mai, C.; Militz, H.; Richter, K.; Urban, K. and Evans, P.D. (2005). Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polym. Degrad. Stab. 89, 189–199.

Decay Resistance of Weathered Beech Wood

Yıl 2020, Cilt: 5 Sayı: 5, 882 - 885, 31.12.2020
https://doi.org/10.35229/jaes.837653

Öz

Wood is susceptible to photo-degradation in outdoor applications, and deformations occur on its surface such as micro or macro cracks, color changes etc. Especially, cracks make wood material more vulnerable to biotic attacks. In this study, decay resistance of natural and accelerated weathered beech samples was investigated by a brown (Coniophora puteana) and white rot (Coriolus versicolor) fungi attacks. For this purpose, beech samples exposed to natural weathering (NW) for 393 days, and accelerated weathering (AW) for 1512h, and then subjected to decay test in malt extract agar medium for 2 and 4 weeks. After 2 weeks of decay testing, weight loss of samples by C. versicolor was found to be 24.30% for controls, 13.29% for AW samples and 24.38% for NW samples. In the case of C. puteana, it was found as 21.15%, 21.49% and 30.61% for controls, AW samples and NW samples, respectively. Weight loss of samples by C. versicolor was found to be 61.82% for controls, 30.72% for AW samples and 37.62% for NW samples, after 4 weeks of decay testing. The weight loss by 4 weeks exposure of C. puteana was found to be 21.43%, 28.44% and 37.67% for controls, AW samples and NW samples, respectively. Natural weathering caused more weight loss than accelerated weathering test for both fungi species.

Destekleyen Kurum

Turkish Scientific and Research Council

Proje Numarası

118O759

Teşekkür

The authors are grateful to Sulekler Forest Industry, Bursa, Turkey for supplying the free-sample of woods materials. Weathering tests of this study was financially supported by Turkish Scientific and Research Council (TUBITAK) under the project number of 118O759

Kaynakça

  • ASTM G154. (2006). Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials, American Society for Testing and Materials.
  • ASTM G7. (2013). Standard Practice for Atmospheric Environmental Exposure Testing of Nonmetallic Materials.
  • Bari, E., Nazarnezhad, N., Kazemi, S. M., Ghanbary, M. A. T., Mohebby, B., Schmidt, O., and Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231-237.
  • Brischke, C., and Meyer-Veltrup, L. (2015). Moisture content and decay of differently sized wooden components during 5 years of outdoor exposure. European Journal of Wood and Wood Products, 73(6), 719-728.
  • Catto, A. L., Montagna, L. S., Almeida, S. H., Silveira, R. M., and Santana, R. M. (2016). Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration & Biodegradation, 109, 11-22.
  • Chow, P., and Bajwa, D. S. (1998). Weathering effects on the decay resistance of creosote-treated oak. In V: Ninety-fourth annual meeting of the American Wood-preservers' Association. Scottsdale, Arizona Vol. 94.
  • EN 113. (1997). Wood preservatives. Test method for determining the protective effectiveness against wood-destroying basidiomycetes. Determination of toxic values.
  • EN 927-3. (2003). Paints and varnishes - Coating materials and coating systems for exterior wood - Part 3: Natural weathering test.
  • Evans P.D. (2008): Weathering and photo-degradation of wood. In: Development of Wood Preservative Systems, ACS Washington DC, USA: 69–117.
  • George, B.; Suttie, E.; Merlin, A and Deglise, X. (2005). Photodegradation and photostabilisation of wood: The state of the art. Polym. Degrad. Stab. 88, 268–274.
  • Lionetto, F., Del Sole, R., Cannoletta, D., Vasapollo, G., and Maffezzoli, A. (2012). Monitoring wood degradation during weathering by cellulose crystallinity. Materials, 5(10), 1910-1922.
  • Metsa-Kortelainen, S., and Viitanen, H. (2017). Durability of thermally modified sapwood and heartwood of Scots pine and Norway spruce in the modified double layer test. Wood Material Science & Engineering, 12(3), 129-139.
  • Panek, M., Reinprecht, L., and Hulla, M. (2014). Ten essential oils for beech wood protection-Efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources, 9(3), 5588-5603.
  • Reinprecht, L., and Grznárik, T. (2015). Biological durability of Scots pine (Pinus sylvestris L.) sapwood modified with selected organo-silanes. Wood Research, 60(5), 687-696.
  • Reinprecht, L., and Hulla, M. (2015). Colour changes of beech wood modified with essential oils due to fungal and ageing-fungal attacks with Coniophora puteana. Drewno: prace naukowe, doniesienia, komunikaty, 58.
  • Sudiyanni, Y., Imamura, Y., and Takahashi, M. (1996). Weathering effects on several properties of chemically modified wood. Wood Research Institute Kyoto University, 83: 55-58.
  • Tomak, E. D., Ustaomer, D., Ermeydan, M. A.,and Yildiz, S. (2018). An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Measurement, 127, 187-197.
  • Xie, Y.; Krause, A.; Mai, C.; Militz, H.; Richter, K.; Urban, K. and Evans, P.D. (2005). Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polym. Degrad. Stab. 89, 189–199.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Sebnem Sevil Arpacı 0000-0002-2591-2837

Merve Cambazoğlu Bu kişi benim 0000-0001-8001-686X

Eylem Dizman Tomak 0000-0001-8654-0005

Proje Numarası 118O759
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 8 Aralık 2020
Kabul Tarihi 20 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 5

Kaynak Göster

APA Arpacı, S. S., Cambazoğlu, M., & Dizman Tomak, E. (2020). Decay Resistance of Weathered Beech Wood. Journal of Anatolian Environmental and Animal Sciences, 5(5), 882-885. https://doi.org/10.35229/jaes.837653


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg