Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Sucul Sistemlerden İzole Edilen Bakterilerin Antibiyotik Dirençliliklerinin Karşılaştırılması

Yıl 2021, Cilt: 6 Sayı: 1, 25 - 30, 31.03.2021
https://doi.org/10.35229/jaes.804414

Öz

Bu çalışmada Doğu Karadeniz Bölgesi’nde iki farklı sucul sistemde (deniz ve tatlı su) bazı balıklardan izole edilen bakterilerde antibiyotik dirençliliği karşılaştırılmıştır. Denizel ortamdan Rize sahillerinden örneklenen, denizatı (Hippocampus guttulatus), mezgit (Merlangius merlangus), levrek (Dicentrarchus labrax), istavrit (Trachurus mediterraneus), palamut (Sarda sarda), gökkuşağı alabalığı (Oncorhynchus mykiss) ve karides (Philocheras trispinosus) olmak üzere 7 farklı konaktan toplamda 15 bakteri izolatı kullanılmıştır. Tatlı su örnekleri olarak ise Artvin ilinde yer alan Deriner Baraj Gölü’nde, 6 farklı sazan türlerinden izole edilen toplam 32 adet bakteri izolatı kullanılmıştır. İzolatların, Ampisilin (AM10μg), Gentamisin (CN10μg), Oksitetrasiklin (T30μg), Amoksisilin- Klavulanik Asit (AMC10μg), Enrofloksasin (ENR5μg), Trimetoprim/Sulfametoksazol (SXT25μg), Florfenikol (FFC30μg), Sulfametoksazol (SMZ25μg), Eritromisin (E15μg) olmak kaydıyla 9 farklı antibiyotiğe karşı dirençlilik durumları disk difüzyon yöntemiyle belirlenmiştir. İzolatlar içerisinde Aeromonas ve Pseudomonas cinsi bakterilerin ayrıca antibiyotik dirençliliği irdelenmiştir (MAR). Farklı sucul sistemlerden izole edilen bakterilerin çoğul antibiyotik direnç indeksleri irdelendiğinde, tüm sistemlerde MAR indeksi eşik değer olan 0,2’den yüksek kaydedilmiştir. Denizel kökenli izolatlar Ampisilin ve Enrofloksasin dışında tüm antibiyotiklere karşı daha dirençli bulunmuştur.

Destekleyen Kurum

recep tayyip erdoğan üniversitesi bilimsel araştırma projeleri koordinatörlüğü

Proje Numarası

2014.103.02.04

Kaynakça

  • Akşit, A. 2016. Antibacterial resistance in the fish farming and its importance, Türkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics. 2(1), 47-54
  • Richardson, C.J.L., Robinson, J.O., Wagener, L.B. & Burke V. (1982). In vitro susceptibility of Aeromonas spp. to antimicrobial agents. J Clin Microbiol, 9, 267-74.
  • Austin, B. & Austin, D.A. (2007). Bacterial fish pathogens: diseases of farmed and wild fish, 4rd ed., Springer Publishing, New York, USA.
  • Ayaz, C. (2017). Penisilinler, Türkiye Klinikleri enfeksiyon hastalıkları - özel konular. Antibiyotikler Güncel Durum Özel Sayısı, 10(1), 39-42.
  • Çapkın, E., Ozdemir, S., Ozturk,R.C. & Altinok, I. (2017). Determination and transferability of plasmid‐mediated antibiotic resistance genes of the bacteria isolated from rainbow trout. Aquaculture Research, 48(11), 5561-5575.
  • Caruso, G. (2016). Antibiotic resistance in fish farming environments: a global concern. Journal of Fisheries Sciences, 10(4), 9-13.
  • Chelossi, E., Vezzulli, L., Milano, A., Branzoni, M., Fabiano, M., Riccardi, G. & Banat, I.M. (2003). Antibiotic resistance of benthic bacteria in fish-farms and control sediments of the Western Mediterranean. Aquaculture, 219, 83–97.
  • CLSI (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Clinical and Laboratory Standart Institute. Wayne, PA, USA, 112p.
  • DePaola, A., Peeler, J.T. & Rodrick, G.E. (1995). Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Applied of Enviromental Microbiology, 61, 2335–2340.
  • Efstratiou, M. A., Bountouni, M. & Kefalas, E. (2018). Spread of antibiotic resistance in aquatic environments: E. coli as a case study. Proceedings, 2, 693. Doi: 10.3390/proceedings2110693.
  • Giraud, E., Douet, D.G., Bris, H.L., Bouju-Albert, A., Donnay-Moreno, C., Thorin, C. & Pouliquen, H. (2006). Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiology Ecology, 55(3), 439–448.
  • Gülay, Z. (2017). Antibacterials and their mechanism of action at the bacterial cell. Turkiye Klinikleri Journal of Infectious Diseases-Special Topics, 10(1), 6-19. Kayhan, F.E. & Yön, N.D. (2014). Sucul organizmalarda çevresel şartlara karşı geliştirilen oksidatif stres mekanizmaları ve adaptif yanıtlar. Marmara Fen Bilimleri Dergisi, 4, 137-151.
  • Kayış, Ş. (2019). Analysis of fish health status in terms of sustainability of aquaculture in Turkey - A swot analysis. Aquaculture Studies, 19(1), 69-76. Doi: 10.4194/2618-6381-v19_1_07.
  • Krumperman, P.H. (1983). Multiple antibiotic resistance indexing of Eschericha coli to identify high risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 461, 165-170.
  • Lasee, B.A. (1995). Introduction to fish health management. U.S. Fish and Wildlife Service La Crosse Fish Health Center 555, Lester Avenue Onalaska, Wisconsin, 54650, 92p.
  • Onuk, E.E., Tanrıverdi Çaycı, Y., Çoban, A.Y., Çiftçi, A., Balta, F. & Didinen, B.I. (2017). Balık ve yetiştirme suyu kökenli Aeromonas izolatlarının antimikrobiyal duyarlılıklarının saptanması. Ankara Üniversitesi Veterinerlik Fakültesi Dergisi, 64, 69-73.
  • Öztürk, R.Ç. & Altınok, İ. (2014). Bacterial and viral fish diseases in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 14, 275-297.
  • Sekkin, S. & Kum, C. (2011). Antibacterial drugs in fish farms: in application and its effects, In: Aral, F. & Z. Doğu (Ed), Recent Advances in Fish Farms, 217-250p, InTech - Open Access Publisher, Rijeka.
  • Selçuk, E.B. (2011). Aşıların tarihçesi. Türkiye Klinikleri Aile Hekimliği- Özel Konular, 2(5), 1-4.
  • Terzi, E. (2018a). Antimicrobial resistance profiles and tetracycline resistance genes of Escherichia coli in Mediterranean mussel and sea snails collected from the Eastern Black Sea (Turkey). Alınteri Journal of Agriculture Sciences, 33(1), 43-49.
  • Terzi, E. (2018b). Yetiştiriciliği yapılan mersin balıklarından izole edilen bakterilerin antimikrobiyal direnç profillerinin belirlenmesi. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 4(2), 7-13.
  • Tünger, Ö. (2008). Makrolitler, ketolitler, linkozamitler, In: Topçu A.W., Söyletir G. & Doğanay, M. (Ed), Enfeksiyon Hastalıkları ve Mikrobiyolojisi: Sistemlere Göre Enfeksiyonlar, 4. Baskı, 2384s, Nobel Tıp Kitabevi, İstanbul.
  • Zhanel, G.G., Dueck, M., Hoban, D.J., Vercaigne, L.M., Embil, J.M. & Gin, A.S. (2001). Review of macrolides and ketolides: focus on respiratory tract infections. Drugs, 61, 443-98.

Comparison of Antibiotic Resistance of Bacteria Isolated from Different Aquatic Systems

Yıl 2021, Cilt: 6 Sayı: 1, 25 - 30, 31.03.2021
https://doi.org/10.35229/jaes.804414

Öz

In this study, antibiotic resistance of bacteria isolated from some fish in two different aquatic systems (sea and fresh water) in the Eastern Black Sea Region was compared. A total of 15 bacterial isolates from 7 different hosts, including seahorse (Hippocampus guttulatus), haddock (Merlangius merlangus), sea bass (Dicentrarchus labrax), horse mackerel (Trachurus mediterraneus), bonito (Sarda sarda), rainbow trout (Oncorhynchus mykiss) and shrimp (Philocheras trispinosus), were used in marine environment. In fresh water samples, a total of 32 bacterial isolates isolated from 6 different carp species Deriner Dam Lake in Artvin province, were used. The resistance of the isolates to 9 different antibiotics including Ampicillin (AM10μg), Gentamicin (CN10μg), Oxytetracycline (T30μg), Amoxicillin-Clavulanic Acid (AMC10μg), Enrofloxacin (ENR5μg), Trimethoprim / Sulfamethoxazole (SXT25μg), Florphenicol, (FFC30μg), Sulfamethoxazole (SMZ25μg), Erythromycin (E15μg) was determined by disk diffusion method. Among the isolates, bacteria of the genus Aeromonas and Pseudomonas were also investigated for antibiotic resistance (MAR). When the multiple antibiotic resistance indices of bacteria isolated from different aquatic systems are examined, the MAR index in all systems was recorded higher than the threshold value of 0.2. Marine isolates were more resistant to all antibiotics except Ampicillin and Enrofloxacin.

Proje Numarası

2014.103.02.04

Kaynakça

  • Akşit, A. 2016. Antibacterial resistance in the fish farming and its importance, Türkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics. 2(1), 47-54
  • Richardson, C.J.L., Robinson, J.O., Wagener, L.B. & Burke V. (1982). In vitro susceptibility of Aeromonas spp. to antimicrobial agents. J Clin Microbiol, 9, 267-74.
  • Austin, B. & Austin, D.A. (2007). Bacterial fish pathogens: diseases of farmed and wild fish, 4rd ed., Springer Publishing, New York, USA.
  • Ayaz, C. (2017). Penisilinler, Türkiye Klinikleri enfeksiyon hastalıkları - özel konular. Antibiyotikler Güncel Durum Özel Sayısı, 10(1), 39-42.
  • Çapkın, E., Ozdemir, S., Ozturk,R.C. & Altinok, I. (2017). Determination and transferability of plasmid‐mediated antibiotic resistance genes of the bacteria isolated from rainbow trout. Aquaculture Research, 48(11), 5561-5575.
  • Caruso, G. (2016). Antibiotic resistance in fish farming environments: a global concern. Journal of Fisheries Sciences, 10(4), 9-13.
  • Chelossi, E., Vezzulli, L., Milano, A., Branzoni, M., Fabiano, M., Riccardi, G. & Banat, I.M. (2003). Antibiotic resistance of benthic bacteria in fish-farms and control sediments of the Western Mediterranean. Aquaculture, 219, 83–97.
  • CLSI (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Clinical and Laboratory Standart Institute. Wayne, PA, USA, 112p.
  • DePaola, A., Peeler, J.T. & Rodrick, G.E. (1995). Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. Applied of Enviromental Microbiology, 61, 2335–2340.
  • Efstratiou, M. A., Bountouni, M. & Kefalas, E. (2018). Spread of antibiotic resistance in aquatic environments: E. coli as a case study. Proceedings, 2, 693. Doi: 10.3390/proceedings2110693.
  • Giraud, E., Douet, D.G., Bris, H.L., Bouju-Albert, A., Donnay-Moreno, C., Thorin, C. & Pouliquen, H. (2006). Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiology Ecology, 55(3), 439–448.
  • Gülay, Z. (2017). Antibacterials and their mechanism of action at the bacterial cell. Turkiye Klinikleri Journal of Infectious Diseases-Special Topics, 10(1), 6-19. Kayhan, F.E. & Yön, N.D. (2014). Sucul organizmalarda çevresel şartlara karşı geliştirilen oksidatif stres mekanizmaları ve adaptif yanıtlar. Marmara Fen Bilimleri Dergisi, 4, 137-151.
  • Kayış, Ş. (2019). Analysis of fish health status in terms of sustainability of aquaculture in Turkey - A swot analysis. Aquaculture Studies, 19(1), 69-76. Doi: 10.4194/2618-6381-v19_1_07.
  • Krumperman, P.H. (1983). Multiple antibiotic resistance indexing of Eschericha coli to identify high risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 461, 165-170.
  • Lasee, B.A. (1995). Introduction to fish health management. U.S. Fish and Wildlife Service La Crosse Fish Health Center 555, Lester Avenue Onalaska, Wisconsin, 54650, 92p.
  • Onuk, E.E., Tanrıverdi Çaycı, Y., Çoban, A.Y., Çiftçi, A., Balta, F. & Didinen, B.I. (2017). Balık ve yetiştirme suyu kökenli Aeromonas izolatlarının antimikrobiyal duyarlılıklarının saptanması. Ankara Üniversitesi Veterinerlik Fakültesi Dergisi, 64, 69-73.
  • Öztürk, R.Ç. & Altınok, İ. (2014). Bacterial and viral fish diseases in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 14, 275-297.
  • Sekkin, S. & Kum, C. (2011). Antibacterial drugs in fish farms: in application and its effects, In: Aral, F. & Z. Doğu (Ed), Recent Advances in Fish Farms, 217-250p, InTech - Open Access Publisher, Rijeka.
  • Selçuk, E.B. (2011). Aşıların tarihçesi. Türkiye Klinikleri Aile Hekimliği- Özel Konular, 2(5), 1-4.
  • Terzi, E. (2018a). Antimicrobial resistance profiles and tetracycline resistance genes of Escherichia coli in Mediterranean mussel and sea snails collected from the Eastern Black Sea (Turkey). Alınteri Journal of Agriculture Sciences, 33(1), 43-49.
  • Terzi, E. (2018b). Yetiştiriciliği yapılan mersin balıklarından izole edilen bakterilerin antimikrobiyal direnç profillerinin belirlenmesi. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 4(2), 7-13.
  • Tünger, Ö. (2008). Makrolitler, ketolitler, linkozamitler, In: Topçu A.W., Söyletir G. & Doğanay, M. (Ed), Enfeksiyon Hastalıkları ve Mikrobiyolojisi: Sistemlere Göre Enfeksiyonlar, 4. Baskı, 2384s, Nobel Tıp Kitabevi, İstanbul.
  • Zhanel, G.G., Dueck, M., Hoban, D.J., Vercaigne, L.M., Embil, J.M. & Gin, A.S. (2001). Review of macrolides and ketolides: focus on respiratory tract infections. Drugs, 61, 443-98.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Neslihan Güngör 0000-0002-6585-4520

Zeynep Zehra İpek 0000-0002-5916-1891

Akif Er 0000-0002-0052-5590

Şevki Kayış 0000-0002-9391-7613

Proje Numarası 2014.103.02.04
Yayımlanma Tarihi 31 Mart 2021
Gönderilme Tarihi 5 Ekim 2020
Kabul Tarihi 19 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 1

Kaynak Göster

APA Güngör, N., İpek, Z. Z., Er, A., Kayış, Ş. (2021). Farklı Sucul Sistemlerden İzole Edilen Bakterilerin Antibiyotik Dirençliliklerinin Karşılaştırılması. Journal of Anatolian Environmental and Animal Sciences, 6(1), 25-30. https://doi.org/10.35229/jaes.804414


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg