Araştırma Makalesi
BibTex RIS Kaynak Göster

Lactococcus garvieae'nin Genomik Yaklaşımlarla Çeşitliliği

Yıl 2021, Cilt: 6 Sayı: 4, 506 - 513, 31.12.2021
https://doi.org/10.35229/jaes.894280

Öz

Lactococcus garvieae is the Gram-positive cocci bacteria known as the causative agent of infectious systemic disease. It causes fatal hemorrhagic septicemia in mainly cultured fish species, animals, and humans worldwide. Comparative genome analyses provide valuable information about genome identification and unique genomic features. In this study, the available L. garvieae genomes are evaluated by comparative genomics approaches. The results indicated that there are four distinct genetic groups of L. garvieae based on the Average Nucleotide Identity (ANI) value. The phylogenetic tree was produced using 16S rRNA sequence has similar genetic variances with the publicly available L. garvieae genome data on NCBI and supports the ANI value. In silico analysis of antimicrobial resistance revealed that each L. garvieae genome groups have unique antimicrobial resistance class genes, even though, all genomes have a common antibiotic-resistant class. Analyzing results of the antimicrobial resistance supports the L. garvieae genetic variations. This extensively comparative approach will provide new insights into the understanding of L. garvieae genomic diversity and antimicrobial resistance.

Kaynakça

  • Aguado-Urda, M., Lopez-Campos, G.H., Blanco, M.M., Fernandez-Garayzabal, J.F., Cutuli, M.T., Aspiroz, C., Lopez-Alonso, V., Gibello, A. (2011). Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol, 193(15), 4033-4034. doi:10.1128/JB.05090-11
  • Angiuoli, S. V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., Tatusova, T., Thomson, N., White, O. (2008). Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS, 12(2), 137-141. doi:10.1089/omi.2008.0017
  • Balta, F., Dengiz Balta, Z. (2019). The Isolation of Lactococcus garvieae from Eyes of Diseased Rainbow Trout (Oncorhynchus mykiss) with Exopthalmia. Journal of Anatolian Environmental and Animal Sciences, 4(1), 27-33. doi:10.35229/jaes.527258
  • de Vries, R. P., Riley, R., Wiebenga, A., Aguilar-Osorio, G., Amillis, S., Uchima, C. A., . . . Grigoriev, I. V. (2017). Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol, 18(1), 28. doi:10.1186/s13059-017-1151-0
  • Ellington, M. J., Ekelund, O., Aarestrup, F.M., Canton, R., Doumith, M., Giske, C., Grundman, H., Hasman, H., Holden, M.T.G., Hopkins, K.L., Iredell, J., Kahlmeter, G., Koser, C.U., MacGowan, A., Mevius, D., Mulvey, M., Naas, T., Peto, T., Rolain, J.M., Samuelsen, O., Woodford, N. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect, 23(1), 2-22. doi:10.1016/j.cmi.2016.11.012
  • Eraclio, G., Ricci, G., Quattrini, M., Moroni, P., Fortina, M.G. (2018). Detection of virulence-related genes in Lactococcus garvieae and their expression in response to different conditions. Folia Microbiol (Praha), 63(3), 291-298. doi:10.1007/s12223-017-0566-z
  • Figueras, M. J., Beaz-Hidalgo, R., Hossain, M.J., Liles, M.R. (2014). Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc, 2(6). doi:10.1128/genomeA.00927-14
  • Gibello, A., Galan-Sanchez, F., Blanco, M.M., Rodriguez-Iglesias, M., Dominguez, L., Fernandez-Garayzabal, J.F. (2016). The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci, 109, 59-70. doi:10.1016/j.rvsc.2016.09.010
  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol, 57(Pt 1), 81-91. doi:10.1099/ijs.0.64483-0
  • Gupta, S. K., Padmanabhan, B.R., Diene, S.M., Lopez-Rojas, R., Kempf, M., Landraud, L., Rolain, J.M. (2014). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother, 58(1), 212-220. doi:10.1128/AAC.01310-13
  • Holmes, A. H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J.V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014), 176-187. doi:10.1016/S0140-6736(15)00473-0
  • Hoshina, T., Sano, T., Morimoto, Y. (1958). A Streptococcus pathogenic to fish. J Tokio Univ Fish, 44, 57-58.
  • Kawanishi, M., Yoshida, T., Yagashiro, S., Kijima, M., Yagyu, K., Nakai, T., Murakami, M., Morita, H., Suzuki, S. (2006). Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J Appl Microbiol, 101(2), 496-504. doi:10.1111/j.1365-2672.2006.02951.x
  • Kim, M., Oh, H.S., Park, S.C., Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol, 64(Pt 2), 346-351. doi:10.1099/ijs.0.059774-0
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. doi:10.1093/molbev/msy096
  • Kumru, S., Tekedar, H. C., Blom, J., Lawrence, M. L., & Karsi, A. (2020). Genomic diversity in flavobacterial pathogens of aquatic origin. Microb Pathog, 142, 104053. doi:10.1016/j.micpath.2020.104053
  • Lin, Y. S., Kweh, K.H., Koh, T.H., Lau, Q.C., Abdul Rahman, N.B. (2020). Genomic analysis of Lactococcus garvieae isolates. Pathology, 52(6), 700-707. doi:10.1016/j.pathol.2020.06.009
  • Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annu Rev Microbiol, 60, 561-588. doi:10.1146/annurev.micro.59.030804.121325
  • Malek, A., De la Hoz, A., Gomez-Villegas, S.I., Nowbakht, C., Arias, C.A. (2019). Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report and review of the literature. BMC Infect Dis, 19(1), 301. doi:10.1186/s12879-019-3912-8
  • Meyburgh, C. M., Bragg, R.R., Boucher, C.E. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis Aquat Organ, 123(1), 67-79. doi:10.3354/dao03083
  • Morita, H., Toh, H., Oshima, K., Yoshizaki, M., Kawanishi, M., Nakaya, K., Suzuki, T., Miyauchi, E., Ishii, Y., Tanabe, S., Murakami, M., Hattori, M. (2011). Complete genome sequence and comparative analysis of the fish pathogen Lactococcus garvieae. PLoS One, 6(8), e23184. doi:10.1371/journal.pone.0023184
  • Nguyen, M., Brettin, T., Long, S.W., Musser, J.M., Olsen, R.J., Olson, R., Shukla, M., Stevens, R.L., Xia, F., Yoo, H., Davis, J.J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep, 8(1), 421. doi:10.1038/s41598-017-18972-w
  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42, 206-214.
  • Rodriguez-R, L. M., Konstantinidis, K.T. (2016). The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints, 4(e1900v1). doi:10.7287/peerj.preprints.1900v1
  • Sahu, K. K., Sherif, A.A., Syed, M.P., Rajendran, A., Mishra, A.K., Davaro, R. (2019). A rare cause of sepsis: Lactococcus garvieae. QJM, 112(6), 447-448. doi:10.1093/qjmed/hcz078
  • Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4), 406-425. doi:10.1093/oxfordjournals.molbev.a040454
  • Shahi, N., Mallik, S.K. (2020). Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features and comparative genomics. Microb Pathog, 104368. doi:10.1016/j.micpath.2020.104368
  • Teixeira, L. M., Merquior, V.L., Vianni, M.C., Carvalho, M.G., Fracalanzza, S.E., Steigerwalt, A.G., Brenner, D.J., Facklam, R.R. (1996). Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int J Syst Bacteriol, 46(3), 664-668. doi:10.1099/00207713-46-3-664
  • Tejedor, J. L., Vela, A.I., Gibello, A., Casamayor, A., Dominguez, L., Fernandez-Garayzabal, J.F. (2011). A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett Appl Microbiol, 53(6), 614-619. doi:10.1111/j.1472-765X.2011.03153.x
  • Tekedar, H. C., Kumru, S., Blom, J., Perkins, A. D., Griffin, M. J., Abdelhamed, H., . . . Lawrence, M. L. (2019). Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PLoS One, 14(8), e0221018. doi:10.1371/journal.pone.0221018
  • Tsai, M. A., Wang, P.C., Yoshida, T., Liaw, L.L., Chen, S.C. (2013). Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Dis Aquat Organ, 102(3), 225-235. doi:10.3354/dao02546
  • Tsai, M. H., Liu, Y. Y., Soo, V. W., & Chen, C. C. (2019). A New Genome-to-Genome Comparison Approach for Large-Scale Revisiting of Current Microbial Taxonomy. Microorganisms, 7(6). doi:10.3390/microorganisms7060161
  • Ture, M., Boran, H. (2015). Phenotypic and genotypic antimicrobial resistance of Lactococcus sp, strains isolated from rainbow trout (Oncorhynchus mykiss). Bulletin of the Veterinary Institute in Pulawy, 59(1), 37-42. doi:10.1515/bvip-2015-0006
  • Varsha, K. K., Nampoothiri, K.M. (2016). Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. nov. Int J Syst Evol Microbiol, 66(10), 3805-3809. doi:10.1099/ijsem.0.001268
  • Vela, A. I., Vazquez, J., Gibello, A., Blanco, M.M., Moreno, M.A., Liebana, P., Albendea, C., Alcala, B., Mendez, A., Dominguez, L., Fernandez-Garayzabal, J.F. (2000). Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. J Clin Microbiol, 38(10), 3791-3795. doi:10.1128/JCM.38.10.3791-3795.2000
  • Vendrell, D., Balcazar, J.L., Ruiz-Zarzuela, I., de Blas, I., Girones, O., Muzquiz, J.L. (2006). Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis, 29(4), 177-198. doi:10.1016/j.cimid.2006.06.003
  • Walther, C., Rossano, A., Thomann, A., Perreten, V. (2008). Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol, 131(3-4), 348-357. doi:10.1016/j.vetmic.2008.03.008
  • Wang, C. Y., Shie, H.S., Chen, S.C., Huang, J.P., Hsieh, I.C., Wen, M.S., Lin, F.C., Wu, D. (2007). Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract, 61(1), 68-73. doi:10.1111/j.1742-1241.2006.00855.x
  • Wilbring, M., Alexiou, K., Reichenspurner, H., Matschke, K., Tugtekin, S.M. (2011). Lactococcus garvieae causing zoonotic prosthetic valve endocarditis. Clin Res Cardiol, 100(6), 545-546. doi:10.1007/s00392-011-0286-3
  • Yoon, S. H., Ha, S.M., Lim, J., Kwon, S., Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek, 110(10), 1281-1286. doi:10.1007/s10482-017-0844-4
  • Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., . . . Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311-1320. doi:10.1126/science.1251385

Diversity of Lactococcus garvieae by Genomic Approaches

Yıl 2021, Cilt: 6 Sayı: 4, 506 - 513, 31.12.2021
https://doi.org/10.35229/jaes.894280

Öz

Lactococcus garvieae is the Gram-positive cocci bacteria known as the causative agent of infectious systemic disease. It causes fatal hemorrhagic septicemia in mainly cultured fish species, animals, and humans worldwide. Comparative genome analyses provide valuable information about genome identification and unique genomic features. In this study, the available L. garvieae genomes are evaluated by comparative genomics approaches. The results indicated that there are four distinct genetic groups of L. garvieae based on the Average Nucleotide Identity (ANI) value. The phylogenetic tree was produced using 16S rRNA sequence has similar genetic variances with the publicly available L. garvieae genome data on NCBI and supports the ANI value. In silico analysis of antimicrobial resistance revealed that each L. garvieae genome groups have unique antimicrobial resistance class genes, even though, all genomes have a common antibiotic-resistant class. Analyzing results of the antimicrobial resistance supports the L. garvieae genetic variations. This extensively comparative approach will provide new insights into the understanding of L. garvieae genomic diversity and antimicrobial resistance.

Kaynakça

  • Aguado-Urda, M., Lopez-Campos, G.H., Blanco, M.M., Fernandez-Garayzabal, J.F., Cutuli, M.T., Aspiroz, C., Lopez-Alonso, V., Gibello, A. (2011). Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol, 193(15), 4033-4034. doi:10.1128/JB.05090-11
  • Angiuoli, S. V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., Kodira, C.D., Kyrpides, N., Madupu, R., Markowitz, V., Tatusova, T., Thomson, N., White, O. (2008). Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS, 12(2), 137-141. doi:10.1089/omi.2008.0017
  • Balta, F., Dengiz Balta, Z. (2019). The Isolation of Lactococcus garvieae from Eyes of Diseased Rainbow Trout (Oncorhynchus mykiss) with Exopthalmia. Journal of Anatolian Environmental and Animal Sciences, 4(1), 27-33. doi:10.35229/jaes.527258
  • de Vries, R. P., Riley, R., Wiebenga, A., Aguilar-Osorio, G., Amillis, S., Uchima, C. A., . . . Grigoriev, I. V. (2017). Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol, 18(1), 28. doi:10.1186/s13059-017-1151-0
  • Ellington, M. J., Ekelund, O., Aarestrup, F.M., Canton, R., Doumith, M., Giske, C., Grundman, H., Hasman, H., Holden, M.T.G., Hopkins, K.L., Iredell, J., Kahlmeter, G., Koser, C.U., MacGowan, A., Mevius, D., Mulvey, M., Naas, T., Peto, T., Rolain, J.M., Samuelsen, O., Woodford, N. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect, 23(1), 2-22. doi:10.1016/j.cmi.2016.11.012
  • Eraclio, G., Ricci, G., Quattrini, M., Moroni, P., Fortina, M.G. (2018). Detection of virulence-related genes in Lactococcus garvieae and their expression in response to different conditions. Folia Microbiol (Praha), 63(3), 291-298. doi:10.1007/s12223-017-0566-z
  • Figueras, M. J., Beaz-Hidalgo, R., Hossain, M.J., Liles, M.R. (2014). Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc, 2(6). doi:10.1128/genomeA.00927-14
  • Gibello, A., Galan-Sanchez, F., Blanco, M.M., Rodriguez-Iglesias, M., Dominguez, L., Fernandez-Garayzabal, J.F. (2016). The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci, 109, 59-70. doi:10.1016/j.rvsc.2016.09.010
  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol, 57(Pt 1), 81-91. doi:10.1099/ijs.0.64483-0
  • Gupta, S. K., Padmanabhan, B.R., Diene, S.M., Lopez-Rojas, R., Kempf, M., Landraud, L., Rolain, J.M. (2014). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother, 58(1), 212-220. doi:10.1128/AAC.01310-13
  • Holmes, A. H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J.V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 387(10014), 176-187. doi:10.1016/S0140-6736(15)00473-0
  • Hoshina, T., Sano, T., Morimoto, Y. (1958). A Streptococcus pathogenic to fish. J Tokio Univ Fish, 44, 57-58.
  • Kawanishi, M., Yoshida, T., Yagashiro, S., Kijima, M., Yagyu, K., Nakai, T., Murakami, M., Morita, H., Suzuki, S. (2006). Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J Appl Microbiol, 101(2), 496-504. doi:10.1111/j.1365-2672.2006.02951.x
  • Kim, M., Oh, H.S., Park, S.C., Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol, 64(Pt 2), 346-351. doi:10.1099/ijs.0.059774-0
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. doi:10.1093/molbev/msy096
  • Kumru, S., Tekedar, H. C., Blom, J., Lawrence, M. L., & Karsi, A. (2020). Genomic diversity in flavobacterial pathogens of aquatic origin. Microb Pathog, 142, 104053. doi:10.1016/j.micpath.2020.104053
  • Lin, Y. S., Kweh, K.H., Koh, T.H., Lau, Q.C., Abdul Rahman, N.B. (2020). Genomic analysis of Lactococcus garvieae isolates. Pathology, 52(6), 700-707. doi:10.1016/j.pathol.2020.06.009
  • Maiden, M. C. (2006). Multilocus sequence typing of bacteria. Annu Rev Microbiol, 60, 561-588. doi:10.1146/annurev.micro.59.030804.121325
  • Malek, A., De la Hoz, A., Gomez-Villegas, S.I., Nowbakht, C., Arias, C.A. (2019). Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report and review of the literature. BMC Infect Dis, 19(1), 301. doi:10.1186/s12879-019-3912-8
  • Meyburgh, C. M., Bragg, R.R., Boucher, C.E. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis Aquat Organ, 123(1), 67-79. doi:10.3354/dao03083
  • Morita, H., Toh, H., Oshima, K., Yoshizaki, M., Kawanishi, M., Nakaya, K., Suzuki, T., Miyauchi, E., Ishii, Y., Tanabe, S., Murakami, M., Hattori, M. (2011). Complete genome sequence and comparative analysis of the fish pathogen Lactococcus garvieae. PLoS One, 6(8), e23184. doi:10.1371/journal.pone.0023184
  • Nguyen, M., Brettin, T., Long, S.W., Musser, J.M., Olsen, R.J., Olson, R., Shukla, M., Stevens, R.L., Xia, F., Yoo, H., Davis, J.J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep, 8(1), 421. doi:10.1038/s41598-017-18972-w
  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42, 206-214.
  • Rodriguez-R, L. M., Konstantinidis, K.T. (2016). The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints, 4(e1900v1). doi:10.7287/peerj.preprints.1900v1
  • Sahu, K. K., Sherif, A.A., Syed, M.P., Rajendran, A., Mishra, A.K., Davaro, R. (2019). A rare cause of sepsis: Lactococcus garvieae. QJM, 112(6), 447-448. doi:10.1093/qjmed/hcz078
  • Saitou, N., Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4), 406-425. doi:10.1093/oxfordjournals.molbev.a040454
  • Shahi, N., Mallik, S.K. (2020). Emerging bacterial fish pathogen Lactococcus garvieae RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features and comparative genomics. Microb Pathog, 104368. doi:10.1016/j.micpath.2020.104368
  • Teixeira, L. M., Merquior, V.L., Vianni, M.C., Carvalho, M.G., Fracalanzza, S.E., Steigerwalt, A.G., Brenner, D.J., Facklam, R.R. (1996). Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int J Syst Bacteriol, 46(3), 664-668. doi:10.1099/00207713-46-3-664
  • Tejedor, J. L., Vela, A.I., Gibello, A., Casamayor, A., Dominguez, L., Fernandez-Garayzabal, J.F. (2011). A genetic comparison of pig, cow and trout isolates of Lactococcus garvieae by PFGE analysis. Lett Appl Microbiol, 53(6), 614-619. doi:10.1111/j.1472-765X.2011.03153.x
  • Tekedar, H. C., Kumru, S., Blom, J., Perkins, A. D., Griffin, M. J., Abdelhamed, H., . . . Lawrence, M. L. (2019). Comparative genomics of Aeromonas veronii: Identification of a pathotype impacting aquaculture globally. PLoS One, 14(8), e0221018. doi:10.1371/journal.pone.0221018
  • Tsai, M. A., Wang, P.C., Yoshida, T., Liaw, L.L., Chen, S.C. (2013). Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae. Dis Aquat Organ, 102(3), 225-235. doi:10.3354/dao02546
  • Tsai, M. H., Liu, Y. Y., Soo, V. W., & Chen, C. C. (2019). A New Genome-to-Genome Comparison Approach for Large-Scale Revisiting of Current Microbial Taxonomy. Microorganisms, 7(6). doi:10.3390/microorganisms7060161
  • Ture, M., Boran, H. (2015). Phenotypic and genotypic antimicrobial resistance of Lactococcus sp, strains isolated from rainbow trout (Oncorhynchus mykiss). Bulletin of the Veterinary Institute in Pulawy, 59(1), 37-42. doi:10.1515/bvip-2015-0006
  • Varsha, K. K., Nampoothiri, K.M. (2016). Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. nov. Int J Syst Evol Microbiol, 66(10), 3805-3809. doi:10.1099/ijsem.0.001268
  • Vela, A. I., Vazquez, J., Gibello, A., Blanco, M.M., Moreno, M.A., Liebana, P., Albendea, C., Alcala, B., Mendez, A., Dominguez, L., Fernandez-Garayzabal, J.F. (2000). Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. J Clin Microbiol, 38(10), 3791-3795. doi:10.1128/JCM.38.10.3791-3795.2000
  • Vendrell, D., Balcazar, J.L., Ruiz-Zarzuela, I., de Blas, I., Girones, O., Muzquiz, J.L. (2006). Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis, 29(4), 177-198. doi:10.1016/j.cimid.2006.06.003
  • Walther, C., Rossano, A., Thomann, A., Perreten, V. (2008). Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol, 131(3-4), 348-357. doi:10.1016/j.vetmic.2008.03.008
  • Wang, C. Y., Shie, H.S., Chen, S.C., Huang, J.P., Hsieh, I.C., Wen, M.S., Lin, F.C., Wu, D. (2007). Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract, 61(1), 68-73. doi:10.1111/j.1742-1241.2006.00855.x
  • Wilbring, M., Alexiou, K., Reichenspurner, H., Matschke, K., Tugtekin, S.M. (2011). Lactococcus garvieae causing zoonotic prosthetic valve endocarditis. Clin Res Cardiol, 100(6), 545-546. doi:10.1007/s00392-011-0286-3
  • Yoon, S. H., Ha, S.M., Lim, J., Kwon, S., Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek, 110(10), 1281-1286. doi:10.1007/s10482-017-0844-4
  • Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., . . . Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311-1320. doi:10.1126/science.1251385
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Salih Kumru 0000-0002-2309-3110

Erken Görünüm Tarihi 30 Aralık 2021
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 28 Temmuz 2021
Kabul Tarihi 4 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 4

Kaynak Göster

APA Kumru, S. (2021). Diversity of Lactococcus garvieae by Genomic Approaches. Journal of Anatolian Environmental and Animal Sciences, 6(4), 506-513. https://doi.org/10.35229/jaes.894280


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg