Araştırma Makalesi
BibTex RIS Kaynak Göster

Erica arborea Bitkisi Kullanılarak Sentezlenen Çinko Nanopartiküllerin Biyoaktivitesinin Değerlendirilmesi

Yıl 2023, Cilt: 8 Sayı: 3, 361 - 366, 30.09.2023
https://doi.org/10.35229/jaes.1301513

Öz

Çevre dostu, uygun maliyetli ve basit yöntemlerle nanopartiküllerin sentezi, tıp ve endüstri alanında pek çok araştırmaya konu olmuştur. Özellikle yeni nesil nano bazlı ilaçların geliştirilmesi için umut verici bir yaklaşım sunmaktadır. Bu çalışmada, Erica arborea (E. arborea) yaprak ekstresi stabilize edici ve indirgeyici ajan olarak kullanılarak çinko oksit nanopartiküllerin (ZnO NPs) sentezi gerçekleştirildi. Hazırlanan ZnO NP’ler UV-vis, FTIR ve SEM-EDX analizleri ile karekterizasyonu yapıldı. SEM-EDX analizlerinde nanopartiküllerin küresel şekilde olduğu ve çinko metalinin güçlü sinyalleri görüldü. UV-vis analizi, nanoparçacıkların oluşumu göstereren çözeltinin renginin açık sarıya dönüştüğünü ve 350 nm’de absorbsiyon zirvesi sergilediğini doğruladı. FT-IR, nanopartiküllerin oluşumun yaprak ekstresinin metbolitlerinin eşlik ettiğini doğruladı. E. arborea tarafından sentezlenen çinko nanopartiküller farmakolojik potansiyeli antioksidan (DPPH yöntemi), antimikrobiyal (disk diffüzyon yöntemi) ve lipid peroksidasyon (TBA yöntemi) aktiviteleri ile değerlendirildi. Biyosentezlenen ZnO NP’ler, bitki ekstresine kıyasla daha iyi antioksidan aktivite sergiledi. ZnO NP’ler ve yaprak ekstresinin DPPH radikal süpürücü aktivitesinin IC50 değerleri sırasıyla 18,71±0.35 ve 9.21±0,10 idi. ZnO NP’lerin lipid peroksidasyon inhibitör aktivitesi IC50 değeri 5,33±0.09 olarak bulundu. ZnO NP’ler, P. aeruginosa, B. Cereus, B. subtilis ve S. aureus patojen bakterileri ve C. albicans mantar şuşuna karşı duyarlı olduğu görüldü. Bulgular, doğal olarak sentezlenen çinko nanopartiküllerin sentezlenmesi, fiziksel ve kimyasal yöntemlere alternatif bir ajan olabileceğini göstermektedir. Ayrıca nanopartiküllerinin farmakolojik aktivitesi yeni nesil ilaç geliştirme çalışmalarına katkı sağlayacaktır.

Proje Numarası

YOK

Kaynakça

  • Agarwal, H., Venkat Kumar, S. & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413. DOI: 10.1016/J.REFFIT.2017.03.002.
  • Ahmad, W. & Kalra, D. (2020). Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University - Science, 32(4), 2358- 2364. DOI: 10.1016/J.JKSUS.2020.03.014.
  • Akkol, E.K., Yeşilada, E. & Güvenç, A. (2008). Valuation of anti-inflammatory and antinociceptive activities of Erica species native to Turkey. Journal of Ethnopharmacology, 116(2), 251-257. DOI: 10.1016/J.JEP.2007.11.023.
  • Del Carmen Sánchez-Navarro, M., Ruiz-Torres, C.A., NiñoMartínez, N., Sánchez-Sánchez, R., MartínezCastañón, G.A., DeAlba-Montero, I. & Ruiz, F. (2018). Cytotoxic and bactericidal effect of silver nanoparticles obtained by green synthesis method using Annona muricata aqueous extract and functionalized with 5-fluorouracil. Bioinorganic Chemistry and Applications, 2018, 1-8. DOI: 10.1155/2018/6506381.
  • Eldaw, B. & Çiftci, G. (2023). Antioxidant Capacity and Antibacterial Potential of Rosehip (Rosa canina) Fruits Grown. J. Anatolian Env. and Anim. Sciences, 8(1), 103-109. DOI: 10.35229/jaes.1240877.
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275-278. DOI: 10.2478/s11756-006-0050-8 Gaschler, M.M. & Stockwell, B.R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419-425. DOI: 10.1016/J.BBRC.2016.10.086.
  • Gour, A. & Jain, N.K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851. DOI: 10.1080/21691401.2019.1577878.
  • Gur, T., Meydan, I., Seckin, H., Bekmezci, M. & Sen, F. (2022). Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research, 204, 111897. DOI: 10.1016/J.ENVRES.2021.111897.
  • Happy Agarwal, Menon, S., Venkat Kumar, S. & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60-70. DOI: 10.1016/J.CBI.2018.03.008.
  • Janaki, A.C., Sailatha, E. & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22. DOI: 10.1016/J.SAA.2015.02.041.
  • Jayachandran, A., Aswathy, T.R. & Nair, A.S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995. DOI: 10.1016/J.BBREP.2021.100995.
  • Kocak, Y, Meydan, I., Gur Karahan, T., & Sen, F. (2023). Investigation of mycosynthesized silver nanoparticles by the mushroom Pleurotus eryngii in biomedical applications. International Journal of Environmental Science and Technology, 1-12. DOI: 10.1007/S13762- 023-04786-Z/FIGURES/8.
  • Kocak, Y., Oto, G., Meydan, I., Seckin, H., Gur, T., Aygun, A. & Sen, F. (2022). Assessment of therapeutic potential of silver nanoparticles synthesized by Ferula Pseudalliacea rech. F. plant. Inorganic Chemistry Communications, 140, 109423. DOI: 10.1016/J.INOCHE.2022.109417.
  • Meydan, I., Burhan, H., Gür, T., Seçkin, H., Tanhaei, B. & Sen, F. (2022). Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro. Environmental Research, 204 (September 2021), 112363. DOI: 10.1016/j.envres.2021.112363.
  • Nava, O.J., Soto-Robles, C.A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A.R., Castro-Beltrán, A., Olivas, A. & Luque, P.A. (2017). Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure, 1147, 1-6. DOI: 10.1016/J.MOLSTRUC.2017.06.078.
  • Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A.R., Rajesh, K. & Kyzas, G.Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. DOI: 10.1016/j.molstruc.2020.128107.
  • Pulit-Prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543–553. DOI: 10.1016/J.APSUSC.2016.05.167.
  • Pyo, Y.H., Lee, T.C., Logendra, L. & Rosen, R.T. (2004). Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry, 85(1), 19-26. DOI: 10.1016/S0308- 8146(03)00294-2.
  • Rahimi Kalateh Shah Mohammad, G., Homayouni Tabrizi, M., Ardalan, T., Yadamani, S. & Safavi, E. (2019). Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. Journal of Biosciences, 44(2), 1-9. DOI: 10.1007/S12038-019-9845-Y/FIGURES/12.
  • Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S.M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95. DOI: 10.1016/J.ENZMICTEC.2018.06.009.
  • Ravichandran, V., Sumitha, S., Ning, C.Y., Xian, O. Y., Kiew Yu, U., Paliwal, N., Shah, S.A.A. & Tripathy, M. (2020). Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Green Chemistry Letters and Reviews, 13(2), 102-116. DOI: 10.1080/17518253.2020.1738562/SUPPL_FILE/TGC L_A_1738562_SM1238.DOCX.
  • Sampath, S., Sunderam, V., Madhavan, Y., Hariharan, N.M., Mohammed, S.S.S., Muthupandian, S., & Lawrance, A.V. (2023). Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity. Biomass Conversion and Biorefinery, 0123456789. DOI: 10.1007/s13399-023-04127-7.
  • Seckin, H., Tiri, R. N.E., Meydan, I., Aygun, A., Gunduz, M.K. & Sen, F. (2022). An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications. Environmental Research, 208, 112708. DOI: 10.1016/J.ENVRES.2022.112708.
  • Singh, T.A., Das, J. & Sil, P.C. (2020). Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science, 286, 102317. DOI: 10.1016/J.CIS.2020.102317.
  • Singh, D. K., Pandey, D. K., Yadav, R. R. & Singh, D. (2013). A study of ZnO nanoparticles and ZnO-EG nanofluid. Journal of Experimental Nanoscience, 8(5), 731-741. DOI: 10.1080/17458080.2011.602369.
  • Suresh, D., Shobharani, R. M., Nethravathi, P.C., Pavan Kumar, M.A., Nagabhushana, H., & Sharma, S.C. (2015). Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 128-134. DOI: 10.1016/J.SAA.2015.01.048.
  • Thirumoorthy, G.S., Balasubramaniam, O., Kumaresan, P., Muthusamy, P. & Subramani, K. (2021). Tetraselmis indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity. BioNanoScience, 11(1), 172-181. DOI: 10.1007/S12668-020-00817- Y/FIGURES/10.
  • Velsankar, K., Venkatesan, A., Muthumari, P., Suganya, S., Mohandoss, S. & Sudhahar, S. (2022). Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and antidiabetic activities. Journal of Molecular Structure, 1255, 132420. DOI: 10.1016/J.MOLSTRUC.2022.132420.
  • Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S. & Praseetha, P.K. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39-45. DOI: 10.1016/J.MSSP.2018.03.017.
  • Yıldız, G., Aktürk, C., Özerkan, M. & Yılmaz, Ö. (2019). Free Radical Scavenging Activity and Antioxidant Contents of Linum arboreum L. (Linaceae). J. Agric Nat 22 (Suppl 1), 16-23. DOI: 10.18016/ksutarimdoga.vi.530120
  • Yüksel, A.K., Dikici, E., Yüksel, M., Işik, M., Tozoğlu, F. & Köksal, E. (2021). Phytochemicals Analysis and Some Bioactive Properties of Erica manipuliflora Salisb. (EMS); Antibacterial, Antiradical and Anti-lipid Peroxidation. Iranian Journal of Pharmaceutical Research, 20(4), 434. DOI: 10.22037/IJPR.2021.115270.15288.
  • Zeghoud, S., Hemmami, H., Seghir, B. B., Amor, I. B., Kouadri, I., Rebiai, A., ... & Simal-Gandara, J. (2022). A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Materials Today Communications, 104747. DOI: 10.1016/j.mtcomm.2022.104747.

Assessment of the Bioactivity of Zinc Nanoparticles Synthesized Using Erica arborea Plant

Yıl 2023, Cilt: 8 Sayı: 3, 361 - 366, 30.09.2023
https://doi.org/10.35229/jaes.1301513

Öz

The synthesis of nanoparticles by environmentally friendly, cost-effective and simple methods has been the subject of much research in medicine and industry. In particular, it offers a promising approach for the development of next-generation nano-based drugs. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Erica arborea (E. arborea) leaf extract as a stabilizing and reducing agent. The prepared ZnO NPs were characterized by UV-vis, FTIR and SEM-EDX analysis. SEM-EDX analysis showed that the nanoparticles were spherical in shape and showed strong signals of zinc metal. UV-vis analysis confirmed that the color of the solution changed to light yellow, indicating the formation of nanoparticles, and exhibited an absorption peak at 350 nm. FT-IR confirmed that the formation of nanoparticles was accompanied by metabolites of the leaf extract. The pharmacological potential of zinc nanoparticles synthesized by E. arborea was evaluated by antioxidant (DPPH method), antimicrobial (disk diffusion method) and lipid peroxidation (TBA method) activities. The biosynthesized ZnO NPs exhibited better antioxidant activity compared to the plant extract. The IC50 values of DPPH radical scavenging activity of ZnO NPs and leaf extract were 18.71±0.35 and 9.21±0.10, respectively. The lipid peroxidation inhibitory activity IC50 value of ZnO NPs was found to be 5.33±0.09. ZnO NPs were found to be sensitive against pathogenic bacteria P. aeruginosa, B. cereus, B. subtilis and S. aureus and fungal strain C. albicans. The findings suggest that synthesizing naturally synthesized zinc nanoparticles could be an alternative agent to physical and chemical methods. In addition, the pharmacological activity of nanoparticles will contribute to next-generation drug development studies.

Destekleyen Kurum

YOK

Proje Numarası

YOK

Teşekkür

The authors would like to thank the Science Application and Research Center, Van Yuzuncu Yil University.

Kaynakça

  • Agarwal, H., Venkat Kumar, S. & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413. DOI: 10.1016/J.REFFIT.2017.03.002.
  • Ahmad, W. & Kalra, D. (2020). Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University - Science, 32(4), 2358- 2364. DOI: 10.1016/J.JKSUS.2020.03.014.
  • Akkol, E.K., Yeşilada, E. & Güvenç, A. (2008). Valuation of anti-inflammatory and antinociceptive activities of Erica species native to Turkey. Journal of Ethnopharmacology, 116(2), 251-257. DOI: 10.1016/J.JEP.2007.11.023.
  • Del Carmen Sánchez-Navarro, M., Ruiz-Torres, C.A., NiñoMartínez, N., Sánchez-Sánchez, R., MartínezCastañón, G.A., DeAlba-Montero, I. & Ruiz, F. (2018). Cytotoxic and bactericidal effect of silver nanoparticles obtained by green synthesis method using Annona muricata aqueous extract and functionalized with 5-fluorouracil. Bioinorganic Chemistry and Applications, 2018, 1-8. DOI: 10.1155/2018/6506381.
  • Eldaw, B. & Çiftci, G. (2023). Antioxidant Capacity and Antibacterial Potential of Rosehip (Rosa canina) Fruits Grown. J. Anatolian Env. and Anim. Sciences, 8(1), 103-109. DOI: 10.35229/jaes.1240877.
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275-278. DOI: 10.2478/s11756-006-0050-8 Gaschler, M.M. & Stockwell, B.R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419-425. DOI: 10.1016/J.BBRC.2016.10.086.
  • Gour, A. & Jain, N.K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851. DOI: 10.1080/21691401.2019.1577878.
  • Gur, T., Meydan, I., Seckin, H., Bekmezci, M. & Sen, F. (2022). Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environmental Research, 204, 111897. DOI: 10.1016/J.ENVRES.2021.111897.
  • Happy Agarwal, Menon, S., Venkat Kumar, S. & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286, 60-70. DOI: 10.1016/J.CBI.2018.03.008.
  • Janaki, A.C., Sailatha, E. & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 17-22. DOI: 10.1016/J.SAA.2015.02.041.
  • Jayachandran, A., Aswathy, T.R. & Nair, A.S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995. DOI: 10.1016/J.BBREP.2021.100995.
  • Kocak, Y, Meydan, I., Gur Karahan, T., & Sen, F. (2023). Investigation of mycosynthesized silver nanoparticles by the mushroom Pleurotus eryngii in biomedical applications. International Journal of Environmental Science and Technology, 1-12. DOI: 10.1007/S13762- 023-04786-Z/FIGURES/8.
  • Kocak, Y., Oto, G., Meydan, I., Seckin, H., Gur, T., Aygun, A. & Sen, F. (2022). Assessment of therapeutic potential of silver nanoparticles synthesized by Ferula Pseudalliacea rech. F. plant. Inorganic Chemistry Communications, 140, 109423. DOI: 10.1016/J.INOCHE.2022.109417.
  • Meydan, I., Burhan, H., Gür, T., Seçkin, H., Tanhaei, B. & Sen, F. (2022). Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro. Environmental Research, 204 (September 2021), 112363. DOI: 10.1016/j.envres.2021.112363.
  • Nava, O.J., Soto-Robles, C.A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A.R., Castro-Beltrán, A., Olivas, A. & Luque, P.A. (2017). Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. Journal of Molecular Structure, 1147, 1-6. DOI: 10.1016/J.MOLSTRUC.2017.06.078.
  • Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf A.R., Rajesh, K. & Kyzas, G.Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure, 1211, 128107. DOI: 10.1016/j.molstruc.2020.128107.
  • Pulit-Prociak, J., Chwastowski, J., Kucharski, A. & Banach, M. (2016). Functionalization of textiles with silver and zinc oxide nanoparticles. Applied Surface Science, 385, 543–553. DOI: 10.1016/J.APSUSC.2016.05.167.
  • Pyo, Y.H., Lee, T.C., Logendra, L. & Rosen, R.T. (2004). Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry, 85(1), 19-26. DOI: 10.1016/S0308- 8146(03)00294-2.
  • Rahimi Kalateh Shah Mohammad, G., Homayouni Tabrizi, M., Ardalan, T., Yadamani, S. & Safavi, E. (2019). Green synthesis of zinc oxide nanoparticles and evaluation of anti-angiogenesis, anti-inflammatory and cytotoxicity properties. Journal of Biosciences, 44(2), 1-9. DOI: 10.1007/S12038-019-9845-Y/FIGURES/12.
  • Rajeshkumar, S., Kumar, S.V., Ramaiah, A., Agarwal, H., Lakshmi, T. & Roopan, S.M. (2018). Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91-95. DOI: 10.1016/J.ENZMICTEC.2018.06.009.
  • Ravichandran, V., Sumitha, S., Ning, C.Y., Xian, O. Y., Kiew Yu, U., Paliwal, N., Shah, S.A.A. & Tripathy, M. (2020). Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Green Chemistry Letters and Reviews, 13(2), 102-116. DOI: 10.1080/17518253.2020.1738562/SUPPL_FILE/TGC L_A_1738562_SM1238.DOCX.
  • Sampath, S., Sunderam, V., Madhavan, Y., Hariharan, N.M., Mohammed, S.S.S., Muthupandian, S., & Lawrance, A.V. (2023). Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity. Biomass Conversion and Biorefinery, 0123456789. DOI: 10.1007/s13399-023-04127-7.
  • Seckin, H., Tiri, R. N.E., Meydan, I., Aygun, A., Gunduz, M.K. & Sen, F. (2022). An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications. Environmental Research, 208, 112708. DOI: 10.1016/J.ENVRES.2022.112708.
  • Singh, T.A., Das, J. & Sil, P.C. (2020). Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science, 286, 102317. DOI: 10.1016/J.CIS.2020.102317.
  • Singh, D. K., Pandey, D. K., Yadav, R. R. & Singh, D. (2013). A study of ZnO nanoparticles and ZnO-EG nanofluid. Journal of Experimental Nanoscience, 8(5), 731-741. DOI: 10.1080/17458080.2011.602369.
  • Suresh, D., Shobharani, R. M., Nethravathi, P.C., Pavan Kumar, M.A., Nagabhushana, H., & Sharma, S.C. (2015). Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 128-134. DOI: 10.1016/J.SAA.2015.01.048.
  • Thirumoorthy, G.S., Balasubramaniam, O., Kumaresan, P., Muthusamy, P. & Subramani, K. (2021). Tetraselmis indica Mediated Green Synthesis of Zinc Oxide (ZnO) Nanoparticles and Evaluating Its Antibacterial, Antioxidant, and Hemolytic Activity. BioNanoScience, 11(1), 172-181. DOI: 10.1007/S12668-020-00817- Y/FIGURES/10.
  • Velsankar, K., Venkatesan, A., Muthumari, P., Suganya, S., Mohandoss, S. & Sudhahar, S. (2022). Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and antidiabetic activities. Journal of Molecular Structure, 1255, 132420. DOI: 10.1016/J.MOLSTRUC.2022.132420.
  • Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S. & Praseetha, P.K. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39-45. DOI: 10.1016/J.MSSP.2018.03.017.
  • Yıldız, G., Aktürk, C., Özerkan, M. & Yılmaz, Ö. (2019). Free Radical Scavenging Activity and Antioxidant Contents of Linum arboreum L. (Linaceae). J. Agric Nat 22 (Suppl 1), 16-23. DOI: 10.18016/ksutarimdoga.vi.530120
  • Yüksel, A.K., Dikici, E., Yüksel, M., Işik, M., Tozoğlu, F. & Köksal, E. (2021). Phytochemicals Analysis and Some Bioactive Properties of Erica manipuliflora Salisb. (EMS); Antibacterial, Antiradical and Anti-lipid Peroxidation. Iranian Journal of Pharmaceutical Research, 20(4), 434. DOI: 10.22037/IJPR.2021.115270.15288.
  • Zeghoud, S., Hemmami, H., Seghir, B. B., Amor, I. B., Kouadri, I., Rebiai, A., ... & Simal-Gandara, J. (2022). A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Materials Today Communications, 104747. DOI: 10.1016/j.mtcomm.2022.104747.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Yılmaz Koçak 0000-0002-8364-4826

İsmet Meydan 0000-0001-5640-6665

Proje Numarası YOK
Erken Görünüm Tarihi 15 Eylül 2023
Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 24 Mayıs 2023
Kabul Tarihi 8 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 3

Kaynak Göster

APA Koçak, Y., & Meydan, İ. (2023). Assessment of the Bioactivity of Zinc Nanoparticles Synthesized Using Erica arborea Plant. Journal of Anatolian Environmental and Animal Sciences, 8(3), 361-366. https://doi.org/10.35229/jaes.1301513


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS