Evaluation of Earthquake Impacts on Land Use and Land Cover (LU/LC) Using Google Earth Engine (GEE), Sentinel-2 Imageries, and Machine Learning: Case Study of Antakya
Yıl 2023,
Cilt: 8 Sayı: 4, 642 - 650, 31.12.2023
Neslişah Civelek
,
Melis İnalpulat
,
Levent Genç
Öz
Natural disasters, especially earthquakes, known to be the most devastating process that threating human life, ecosystems, and land properties including land use and land cover (LULC). Understanding of such changes may help for rehabilitation processes, as well as presentation of baseline to develop management strategies for further steps. Remote sensing technologies have long been used for determination of change directions and magnitudes after earthquakes while development in cloud-based platforms provided users to avoid issues in storage and processing costs, effectively. In present study, it was aimed to determine LULC changes occurred around Antakya city of Hatay after February 06, 2023 and February 20, 2023 earthquakes, which caused serious losses. Moreover changes within 5 km zone from central coordinates were also investigated by considering individual subzones with 1 km width. One of the most widely used machine learning algorithm, random forest (RF), was used classify Sentinel-2 imageries via Google Earth Engine (GEE) platform. Accuracy assessment procedures were implemented to determine reliabilities of LULC2022 and LULC2023, and accuracies were found over 0.85. Investigation of overall changes have revealed that areas of forest (F) and cultivated fields (CF) were considerably decreased while concrete (C), natural vegetation (N) and water (W) areas have increased. Dispersal of collapse buildings resulted in increase of C class not only at city level, but also within each subzone of 5 km buffer zone. Classification of Sentinel-2 imageries through RF algorithm in GEE provided rapid and reliable results for determining changes in Antakya, whereby periodically monitoring of further changes strongly suggested.
Kaynakça
-
Amani, M., Ghorbanian, A., Ahmadi, S.A., Kakooei,
M., Moghimi, A., Mirmazloumi, S.M.,
Moghaddam, S.H.A., Mahdavi, S.,
Ghahremanloo, M., Parsian, S., Wu, Q. &
Brisco, B. (2020). Google Earth Engine cloud
computing platform for remote sensing big data
applications: A comprehensive review. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens., 13,
5326-5350.
-
An, Q., Feng, G., He, L., Xiong, Z., Lu, H., Wang, X. &
Wei, J. (2023). Three-dimensional deformation
of the 2023 Turkey Mw 7.8 and Mw 7.7
earthquake sequence obtained by fusing optical
and SAR images. Remote Sensing, 15, 2656.
-
Balamurugan, G. & Aravind, S.M. (2015). Land use land
cover changes in pre- and post-earthquake
affected area using Geoinformatics-Western
Coast of Gujarat, India. Disaster Advances, 8(4),
8313.
-
Bharatkar, P.S. & Patel, R. (2013). Approach to accuracy
assessment tor RS image classification
techniques. International Journal of Scientific &
Engineering Research, 4(12), 79-86.
-
Breiman, L. (2001). Random forests. Mach. Learn., 45, 5-
32.
-
Chen, Y. & Makoto, N. (2021). Analysis of changes in
land use/land cover and hydrological processes
caused by earthquakes in the Atsuma River Basin
in Japan. Remote Sensing, 13, 13041.
-
Cohen, J. (1960). A Coefficient of agreement for nominal
scales. Educational and Psychological
Measurement, 20, 37-46.
-
Demirkesen, A.C. (2012). Multi-risk interpretation of
natural hazards for settlements of the Hatay
province in the east Mediterranean
Region,Turkey using SRTM DEM. Environ.
Earth Sci., 65, 1895-1907.
-
Gkougkoustamos, J., Krassakis, P., Kalogeropoulou, G.
& Parcharidis, I. (2023). Correlation of ground
deformation induced by the 6 February 2023 M7.8
and M7.5 earthquakes in Turkey inferred by
Sentinel-2 and critical exposure in Gaziantep and
Kahramanmaras cities. GeoHazards, 4, 267-285.
-
Gokceoglu, C. (2023). 6 February 2023 Kahramanmaraş
- Türkiye earthquakes : A general overview. The
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information
Sciences, Volume XLVIII-M-1-2023 39th
International Symposium on Remote Sensing of
Environment (ISRSE-39) “From Human Needs to
SDGs”, 24-28 April 2023, Antalya, Türkiye, 417-
424.
-
Gou, Y., Li, H., Liang, P., Xiong, R., Chaozhong, H. &
Xu, Y. (2023). Preliminary report of coseismic
surface rupture (part) of Turkey's MW7.8
earthquake by remote sensing interpretation.
Earthquake Research Advances, 100219. DOI:
10.1016/j.eqrea.2023.100219
-
Guner, B. (2020). A periodical approach to earthquake
damages in Turkey; 3 periods, 3 earthquakes.
Eastern Geographical Review, 25(43), 139-152.
-
Joshi, G., Natsuaki, R. & Hirose A. (2021). Multi-sensor
satellite-imaging data fusion for earthquake
damage assessment and the significant features.
7th Asia-Pacific Conference on Synthetic Aperture
Radar (APSAR). 1 November 2021, 1-6.
-
Landis, J.R. & Koch, G.G. (1977). The measurement of
observer agreement for categorical data.
Biometrics, 33(1), 159-174.
-
Lee, C.S., You, Y.H. & Robinson, G.R. (2002).
Secondary succession and natural habitat
restoration in abandoned rice fields of central
Korea. Restor. Ecol., 10, 306-314.
-
Levin, N. (2023). Using night lights from Space to assess
areas impacted by the 2023 Turkey earthquake.
Remote Sensing, 15, 2120.
-
Loukika, K.N., Keesara, V.R. & Sridhar, V. (2021).
Analysis of land use and land cover using machine
learning algorithms on Google Earth Engine for
Munneru River Basin, India. Sustainability, 13,
13758.
-
Ozcelik, A.E., Corbaci, O.L. & Yuksek, T. (2023).
Spatial analysis of green areas located in affected
cities by the Kahramanmaras centered earthquake
according to earthquake susceptibility with
Geographical Information Systems. Journal of
Anatolian Environmental and Animal Sciences,
8(3), 273-282.
-
Ozyavuz, M., Donmez, Y. & Corbaci, O.L. (2016).
Natural disaster management availability of open and green areas; example of earthquake park.
Doğal Afet ve Afet Yönetimi Sempozyumu
(DAAYS’16), 2-4 Mart 2016, Karabük, Türkiye.
-
Portillo, A. & Moya, L. (2023). Seismic risk
regularization for urban changes due to
earthquakes: A case of study of the 2023 Turkey
earthquake sequence. Remote Sens., 15, 2754.
-
Roy, K., Sasada, K. & Kohno, E. (2014). Salinity status
of the 2011 Tohoku-oki tsunami affected
agricultural lands in Northeast Japan.
International Soil and Water Conservation
Research, 2(2), 40-50.
-
Velastegui Montoya, A., Rivera Torres, H., Herrera
Matamoros, V., Sades, L. & Pacheco Quevedo,
R. (2022). Application of Google Earth Engine
for land cover classification in Yasuni National
Park, Ecuador. International Geoscience and
Remote Sensing Symposium, 17-22 July 2022,
Kuala-Lumpur, Malaysia, 6376-6379.
-
Vizzari, M. (2022). Planetscope, Sentinel-2, and Sentinel1 data integration for object-based land cover
classification in Google Earth Engine. Remote
Sensing, 14(11), 2628.
-
Yan, Z., Huazhong, R. & Desheng, C. (2018). The
research of building earthquake damage objectoriented change detection based on ensemble
classifier with remote sensing image. Geoscience
and Remote Sensing Symposium, 22-27 July 2018,
Valencia, Spain, 4950-4953.
-
Yavasoglu, F. & Varol Ozden C.(2017). Using
geographic information systems (GIS) BASED
analytic hierarchy process (AHP) earthquake
damage risk analysis: Kadikoy case. Turkish
Science Research Foundation, 10(3), 28-38.
-
Yuan, Y., Wang, C., Liu, S., Chen, Z., Ma, X., Li, W.,
Zhang, L. & Yu, B. (2023). The changes in
nighttime lights caused by the Turkey–Syria
earthquake using NOAA-20 VIIRS Day/Night
band data. Remote Sensing, 15, 3438.
-
Yoshii, T., Imamura, M., Matsuyama, M., Koshimura,
S., Matsuoka, M., Mas, E. & Jimenez, C.
(2012). Salinity in soils and tsunami deposits in
areas affected by the 2010 Chile and 2011 Japan
Tsunamis. Pure and Applied Geophysics, 170(6-
8), 1047-1066.
Depremin Arazi Kullanım ve Arazi Örtüsü (AKAÖ) Üzerine Etkilerinin Google Earth Engine (GEE), Sentinel-2 Görüntüleri ve Makine Öğrenmesi Kullanılarak Değerlendirilmesi: Antakya Örneği
Yıl 2023,
Cilt: 8 Sayı: 4, 642 - 650, 31.12.2023
Neslişah Civelek
,
Melis İnalpulat
,
Levent Genç
Öz
Doğal afetler, özellikle depremler, insan hayatını, ekosistemleri, arazi kullanımı ve arazi örtüsü gibi arazi (AKAÖ) özelliklerini tehdit eden en tahripkar süreçlerden biridir. Buna benzer değişimlerin anlaşılması rehabilitasyon süreçlerine yardımcı olmanın yanında sonraki aşamalar için yönetim stratejileri geliştirilmesi açısından bir başlangıç noktası sağlar. Depremler sonrasında değişimin yönü ve büyülüğünün belirlenmesinde uzaktan algılama teknolojileri uzun zamandır kullanılmakta olup, buluta dayalı platformların geliştirilmesi bu anlamda kullanıcıların depolama ve işleme maliyeti sorunlarından kaçınmasını etkili bir şekilde sağlamıştır. Bu çalışmada, ciddi kayıplara yol açan 6 Şubat 2023 ve 20 Şubat 2023 depremlerinden sonra Hatay iline bağlı Antakya’ da meydana gelen AKAÖ değişimlerinin belirlenmesi amaçlanmıştır. Bunun yanında, merkez koordinatlarından 5 km uzağı kapsayan zon içerisinde meydana gelen değişimler 1 km genişliğindeki alt zonlar gözetilerek incelenmiştir. Sentinel-2 görüntülerinin Google Earth Engine (GEE) ile sınıflandırılmasında en çok kullanılan makine öğrenmesi algoritmalarından bir olan rassal orman (RO) algoritması kullanılmıştır. AKAÖ2022 ve AKAÖ2023 güvenilirliklerinin belirlenmesi için doğruluk analizi prosedürleri uygulanmış, ve doğruluklar 0.85’ in üzerinde bulunmuştur. Genel değişimlerin incelenmesi betonarme (B), doğal vejetasyon (D) ve su (S) alanların artarkenorman (O) ve tarım (T) alanlarının dikkate değer şekilde azaldığını göstermiştir. Çöken binaların dağılışı yalnızca şehir düzeyinde değil, 5 km tampon zor içerisindeki herbir alt zon içerisinde B sınıf artışı ile sonuçlanmıştır. Sentinel-2 görüntülerinin RO algoritması ile GEE’ nda sınıflandırılması Antakya’ da meydana gelen değişimlerin belirlenmesinde hızlı ve güvenilir sonuçları vermiş olup, gelecekteki değişimlerin periyodik olarak izlenmesi şiddetle önerilmiştir.
Kaynakça
-
Amani, M., Ghorbanian, A., Ahmadi, S.A., Kakooei,
M., Moghimi, A., Mirmazloumi, S.M.,
Moghaddam, S.H.A., Mahdavi, S.,
Ghahremanloo, M., Parsian, S., Wu, Q. &
Brisco, B. (2020). Google Earth Engine cloud
computing platform for remote sensing big data
applications: A comprehensive review. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens., 13,
5326-5350.
-
An, Q., Feng, G., He, L., Xiong, Z., Lu, H., Wang, X. &
Wei, J. (2023). Three-dimensional deformation
of the 2023 Turkey Mw 7.8 and Mw 7.7
earthquake sequence obtained by fusing optical
and SAR images. Remote Sensing, 15, 2656.
-
Balamurugan, G. & Aravind, S.M. (2015). Land use land
cover changes in pre- and post-earthquake
affected area using Geoinformatics-Western
Coast of Gujarat, India. Disaster Advances, 8(4),
8313.
-
Bharatkar, P.S. & Patel, R. (2013). Approach to accuracy
assessment tor RS image classification
techniques. International Journal of Scientific &
Engineering Research, 4(12), 79-86.
-
Breiman, L. (2001). Random forests. Mach. Learn., 45, 5-
32.
-
Chen, Y. & Makoto, N. (2021). Analysis of changes in
land use/land cover and hydrological processes
caused by earthquakes in the Atsuma River Basin
in Japan. Remote Sensing, 13, 13041.
-
Cohen, J. (1960). A Coefficient of agreement for nominal
scales. Educational and Psychological
Measurement, 20, 37-46.
-
Demirkesen, A.C. (2012). Multi-risk interpretation of
natural hazards for settlements of the Hatay
province in the east Mediterranean
Region,Turkey using SRTM DEM. Environ.
Earth Sci., 65, 1895-1907.
-
Gkougkoustamos, J., Krassakis, P., Kalogeropoulou, G.
& Parcharidis, I. (2023). Correlation of ground
deformation induced by the 6 February 2023 M7.8
and M7.5 earthquakes in Turkey inferred by
Sentinel-2 and critical exposure in Gaziantep and
Kahramanmaras cities. GeoHazards, 4, 267-285.
-
Gokceoglu, C. (2023). 6 February 2023 Kahramanmaraş
- Türkiye earthquakes : A general overview. The
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information
Sciences, Volume XLVIII-M-1-2023 39th
International Symposium on Remote Sensing of
Environment (ISRSE-39) “From Human Needs to
SDGs”, 24-28 April 2023, Antalya, Türkiye, 417-
424.
-
Gou, Y., Li, H., Liang, P., Xiong, R., Chaozhong, H. &
Xu, Y. (2023). Preliminary report of coseismic
surface rupture (part) of Turkey's MW7.8
earthquake by remote sensing interpretation.
Earthquake Research Advances, 100219. DOI:
10.1016/j.eqrea.2023.100219
-
Guner, B. (2020). A periodical approach to earthquake
damages in Turkey; 3 periods, 3 earthquakes.
Eastern Geographical Review, 25(43), 139-152.
-
Joshi, G., Natsuaki, R. & Hirose A. (2021). Multi-sensor
satellite-imaging data fusion for earthquake
damage assessment and the significant features.
7th Asia-Pacific Conference on Synthetic Aperture
Radar (APSAR). 1 November 2021, 1-6.
-
Landis, J.R. & Koch, G.G. (1977). The measurement of
observer agreement for categorical data.
Biometrics, 33(1), 159-174.
-
Lee, C.S., You, Y.H. & Robinson, G.R. (2002).
Secondary succession and natural habitat
restoration in abandoned rice fields of central
Korea. Restor. Ecol., 10, 306-314.
-
Levin, N. (2023). Using night lights from Space to assess
areas impacted by the 2023 Turkey earthquake.
Remote Sensing, 15, 2120.
-
Loukika, K.N., Keesara, V.R. & Sridhar, V. (2021).
Analysis of land use and land cover using machine
learning algorithms on Google Earth Engine for
Munneru River Basin, India. Sustainability, 13,
13758.
-
Ozcelik, A.E., Corbaci, O.L. & Yuksek, T. (2023).
Spatial analysis of green areas located in affected
cities by the Kahramanmaras centered earthquake
according to earthquake susceptibility with
Geographical Information Systems. Journal of
Anatolian Environmental and Animal Sciences,
8(3), 273-282.
-
Ozyavuz, M., Donmez, Y. & Corbaci, O.L. (2016).
Natural disaster management availability of open and green areas; example of earthquake park.
Doğal Afet ve Afet Yönetimi Sempozyumu
(DAAYS’16), 2-4 Mart 2016, Karabük, Türkiye.
-
Portillo, A. & Moya, L. (2023). Seismic risk
regularization for urban changes due to
earthquakes: A case of study of the 2023 Turkey
earthquake sequence. Remote Sens., 15, 2754.
-
Roy, K., Sasada, K. & Kohno, E. (2014). Salinity status
of the 2011 Tohoku-oki tsunami affected
agricultural lands in Northeast Japan.
International Soil and Water Conservation
Research, 2(2), 40-50.
-
Velastegui Montoya, A., Rivera Torres, H., Herrera
Matamoros, V., Sades, L. & Pacheco Quevedo,
R. (2022). Application of Google Earth Engine
for land cover classification in Yasuni National
Park, Ecuador. International Geoscience and
Remote Sensing Symposium, 17-22 July 2022,
Kuala-Lumpur, Malaysia, 6376-6379.
-
Vizzari, M. (2022). Planetscope, Sentinel-2, and Sentinel1 data integration for object-based land cover
classification in Google Earth Engine. Remote
Sensing, 14(11), 2628.
-
Yan, Z., Huazhong, R. & Desheng, C. (2018). The
research of building earthquake damage objectoriented change detection based on ensemble
classifier with remote sensing image. Geoscience
and Remote Sensing Symposium, 22-27 July 2018,
Valencia, Spain, 4950-4953.
-
Yavasoglu, F. & Varol Ozden C.(2017). Using
geographic information systems (GIS) BASED
analytic hierarchy process (AHP) earthquake
damage risk analysis: Kadikoy case. Turkish
Science Research Foundation, 10(3), 28-38.
-
Yuan, Y., Wang, C., Liu, S., Chen, Z., Ma, X., Li, W.,
Zhang, L. & Yu, B. (2023). The changes in
nighttime lights caused by the Turkey–Syria
earthquake using NOAA-20 VIIRS Day/Night
band data. Remote Sensing, 15, 3438.
-
Yoshii, T., Imamura, M., Matsuyama, M., Koshimura,
S., Matsuoka, M., Mas, E. & Jimenez, C.
(2012). Salinity in soils and tsunami deposits in
areas affected by the 2010 Chile and 2011 Japan
Tsunamis. Pure and Applied Geophysics, 170(6-
8), 1047-1066.