Araştırma Makalesi
BibTex RIS Kaynak Göster

Thiol/disulfide Homeostasis and Some Minerals in Aging

Yıl 2024, Cilt: 9 Sayı: 2, 190 - 195, 30.06.2024
https://doi.org/10.35229/jaes.1436383

Öz

The aim of the study was to investigate how aging affects thiol/disulphide balance and
serum mineral levels in rats of different ages. Twenty-four healthy male Sprague-Dawley rats in
good health were used as study subjects. Group 1 consisted of 1.5-month-old baby rats, followed
by 6-month-old, 12-month-old and 18-month-old groups. Sodium (Na), potassium (K), chloride
(Cl), phosphorus (P), calcium (Ca), iron (Fe) and magnesium (Mg) concentrations in serum were
measured by spectrophotometric method. Natural Thiol (NTL) and Total Thiol (TTL)
concentrations were determined using Rel Assay Diagnostics Equipment. The difference between
Na, Fe and Mg levels was not statistically significant (P>0.05). Compared with group 1, Ca levels
of groups 2 and 3 were shown to be significantly lower. Growth resumed in group 4 (P<0.05). K
levels were lower in groups 2 and 3 compared to group 1. In group 4, it started to increase
(P>0.05). Cl level started to increase with increasing age and this increase was significant between
groups 1 and 4 (P<0.05). While the difference between Group 3 and Group 4 was significant
(P<0.05), the difference between Group 2, which had the highest TTL and NTL levels, and Group
1, which started to decrease with age, was not significant (P>0.05). It has been found that disulfide
levels begin to increase as we age (P>0.05). Mineral amounts and thiol/disulphide balance were
found to change with age.

Kaynakça

  • Ates, I., Kaplan, M., Yuksel, M., Mese, D., Alisik, M., Erel, Ö., Yilmaz, N. & Guler, S. (2016). Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and the factors associated with thiol oxidation. Endocrine, 51, 47-51. DOI: 10.1007/s12020-015-0784-6
  • Bal, C., Büyükşekerci, M., Koca, C., Ağış, E.R., Erdoğan, S., Baran, P., Gündüzöz, M. & Yilmaz, Ö.H. (2016). The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure. Hum. Exp. Toxicol., 35, 915-20. DOI: 10.1177/0960327115608928
  • Barbagallo, M. & Dominguez, L.J. (2010). Magnesium and aging. Curr. Pharm. Des., 16, 832-9. DOI: 10.2174/138161210790883679
  • Barja, G. (2013).Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal, 19, 1420-45. DOI: 10.3390/nu13020463
  • Barzilai, N., Huffman, D.M., Muzumdar, R.H. & Bartke, A. (2012). The critical role of metabolic pathways in aging. Diabetes, 61, 1315-22. DOI: 10.2337/db11-1300
  • Bektas, A., Schurman, S.H., Sen R. & Ferrucci, L. (2017). Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol., 102, 977- 88. DOI: 10.1189/jlb.3RI0716-335R
  • Boult, J., Roberts, K., Brookes, M.J., Hughes, S., Bury, J.P., Cross, S.S., Anderson, G.J., Spychal, R., Iqbal, T. & Tselepis, C. (2008). Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res., 14, 379-87. DOI: 10.1158/1078-0432.CCR-07-1054
  • Bourgonje, A.R., Abdulle, A.E., Kieneker, L.M., Gemert, S.B., Gansevoort, R.T., Bakker, S.J.L., Mulder, D.J., Pasch, A., Saleh, J., Gordijn, S.J. & Goor, H. (2021). Systemic oxidative stress, aging and the risk of cardiovascular events in the general female population. Front. Cardiovasc. Med., 8, 630543. DOI: 10.3389/fcvm.2021.630543
  • Campbell, J.D. (2001). Lifestyle, minerals and health. Med. Hypotheses, 57, 521-31. DOI: 10.1097/01.jnen.0000202887.22082.63
  • Conde, J.R. & Streit, W.J. (2006). Microglia in the aging brain. J. Neuropathol. Exp. Neurol., 65, 199-203. DOI: 10.1097/01.jnen.0000202887.22082.63
  • Crichton, R. (2016). Iron metabolism: from molecular mechanisms to clinical consequences. John Wiley & Sons.
  • Elmas, B., Karacan, M., Dervisoglu, P., Kosecik, M., İşgüven, Ş.P. & Bal, C. (2017). Dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in obese children and its relationship with inflammatory-cardiovascular markers. Anatolian J. Cardiol., 18, 361-369. DOI: 10.14744/AnatolJCardiol.2017.7740
  • Erel, O. & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem., 47, 326-32. DOI: 10.1016/j.clinbiochem.2014.09.026
  • Fischer, F., Hamann, A. & Osiewacz, H.D. (2012). Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci., 37, 284-92. DOI: 10.1016/j.tibs.2012.02.004
  • Flatt, T. (2012). A new definition of aging? Front. Genet., 3, 148. DOI: 10.3389/fgene.2012.00148 Ganong, W.F. (1995). Review of medical physiology. Dyn. Blood Lymph Flow, 30, 525-41.
  • Go, Y.M. & Jones, D.P. (2011). Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med., 50, 495-509. DOI: 10.1016/j.freeradbiomed.2010.11.029
  • Gümüşyayla, Ş., Vural, G., Bektas, H., Neselioglu, S., Deniz, O. & Erel, Ö. (2016). Evaluation of dynamic thiol-disulphide homeostasis in patients with epilepsy. Epilepsi, 22, 86-92.
  • Halliwell, B. (2020). Reflections of an aging free radical. Free Radic. Biol. Med., 161, 234-45. DOI: 10.1016/j.freeradbiomed.2020.10.010
  • Higdon, J. & Drake, V.J. (2012). Potassium. In: An Evidence-Based Approach to Vitamins and Mineral. Eds: Higdon, J. & Drake, V.J. Thieme Press, 172 p.
  • Hurrell, R.F. (1997). Bioavailability of iron. Eur. J. Clin. Nutr., 51, 4-8.
  • Jones, D.P. & Liang, Y. (2009). Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med., 47, 329-38. DOI: 10.1016/j.freeradbiomed.2009.08.021
  • Karaman, Y.K., Novgorodtseva, T.P. & Yan’kova, V.I. (2013). Effects on Alimentary High-Fat Diet on Thiol Disulfide Homeostasis in Rats. Bull. Exp. Biol. Med., 155, 752-756. DOI: 10.1007/s10517- 013-2244-8
  • Killilea, D.W., Wong, S.L., Cahaya, H. S., Atamna, H. & Ames, B.N. (2004). Iron accumulation during cellular senescence. Ann. N. Y. Acad. Sci., 1019, 365-7. DOI: 10.1196/annals.1297.063
  • Korkmaz, V., Kurdoglu, Z., Alisik, M., Cetin, O., Korkmaz, H., Surer, H. & Erel, O. (2016). Impairment of thiol-disulfide homeostasis in preeclampsia. J. Matern. Neonatal. Med., 29, 3848-53. DOI: 10.3109/14767058.2016.1149561
  • Kulaksizoglu, B. & Kulaksizoglu S. (2017). Thiol/disulfide homeostasis in patients with panic disorder. Int. J. Clin. Med., 8(1), 34-41. DOI: 10.4236/ijcm.2017.81004
  • Lansdown, A.B.G. (2002). Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen., 10, 271-285. DOI: 10.1046/j.1524-475X.2002.10502.x
  • Matteucci, E. & Giampietro, O. (2010). Thiol signalling network with an eye to diabetes. Molecules, 15,(12) 8890-8903. DOI: 10.3390/molecules15128890
  • Michaylova, V. & Illkova, P.P. (1971). The liquit-state, iodideselective electrode. Anal. Chim. Acta, 53, 194.
  • Mikhail, N. & Ehsanipoor, K. (1999). Ionized serum magnesium in type 2 diabetes mellitus: its correlation with total serum magnesium and hemoglobin A1c levels. South Med. J., 92, 1162- 6. DOI: 10.1097/00007611-199912000-00005
  • Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., Yongvanit, P., Kawanishi, S. & Murata, M. (2014). Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 16, 193-217. DOI: 10.3390/ijms16010193
  • Torti, S.V. & Torti, F.M. (2013). Iron and cancer: More or to be mined. Nat. Rev. Cancer, 13, 342-55. DOI: 10.1038/nrc3495
  • Touitou, Y., Godard, J. P., Ferment, O., Chastang, C., Proust, J., Bogdan, A., Auzeby, A. & Touitou, C. (1987). Prevalence of magnesium and potassium deficiencies in the elderly. Clin. Chem., 33, 518-23.
  • Turell, L., Radi, R. & Alvarez, B. (2013). The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol. Med., 65, 244-53. DOI: 10.1016/j.freeradbiomed.2013.05.050
  • Vural, G., Gumusyayla, S., Bektas, H., Deniz, O., Alisik, M. & Erel, O. (2017). Impairment of dynamic thiol-disulphide homeostasis in patients with idiopathic Parkinson’s disease and its relationship with clinical stage of disease. Clin. Neurol. Neurosurg., 153, 50-55. DOI: 10.1016/j.clineuro.2016.12.009.

Yaşlanmada tiyol/disülfür Homeostazisi ve Bazı Mineraller

Yıl 2024, Cilt: 9 Sayı: 2, 190 - 195, 30.06.2024
https://doi.org/10.35229/jaes.1436383

Öz

Araştırmada farklı yaşlardaki sıçanlarda yaşlanmanın tiyol/disülfit dengesi ve serum mineral
düzeylerine etkisinin araştırılması amaçlandı. Çalışma denekleri olarak sağlık durumu iyi 24
sağlıklı erkek Sprague-Dawley sıçanı kullanıldı. Grup 1'de 1,5 aylık yavru sıçanlar yer alırken
bunu 6 aylık, 12 aylık ve 18 aylık gruplar takip etti. Serumdaki sodyum (Na), potasyum (K),
klorür (Cl), fosfor (P), kalsiyum (Ca), demir (Fe) ve magnezyum (Mg) konsantrasyonları
spektrofotometrik yöntem kullanılarak ölçüldü. Doğal Tiol (NTL) ve Toplam Tiyol (TTL)
konsantrasyonları Rel Assay Diagnostics Equipment kullanılarak belirlendi. Farklı yaş
gruplarındaki sıçanların Na, Fe ve Mg seviyeleri arasındaki fark istatistiksel olarak önemli
bulunmadı (P>0.05). Grup 1 ile karşılaştırıldığında Grup 2 ve 3'ün Ca düzeylerinin anlamlı
derecede düşük olduğu görüldü. Grup 4'te artmaya başladı (P<0.05). Grup 2 ve 3'te K
düzeylerinin Grup 1'e göre daha düşük olduğu görüldü. Grup 4'te ise artmaya başladı
(P>0.05).Yaş arttıkça Cl düzeyi artmaya başladı ve Grup 1 ile 4 arasında bu artış anlamlıydı
(P<0.05). Grup 3 ve Grup 4 arasındaki fark anlamlı iken (P<0.05), Grup 2'de TTL ve NTL
düzeyleri en yüksek olan ve yaşlanmayla birlikte düşmeye başlayan Grup 1 arasındaki farkın
anlamlı olmadığı (P>0.05) tespit edildi. Yaş aldıkça disülfit seviyelerinin artmaya başladığı
bulundu (P>0.05). Mineral miktarlarının ve tiyol/disülfür dengesinin yaşla birlikte değiştiği tespit
edildi.

Kaynakça

  • Ates, I., Kaplan, M., Yuksel, M., Mese, D., Alisik, M., Erel, Ö., Yilmaz, N. & Guler, S. (2016). Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and the factors associated with thiol oxidation. Endocrine, 51, 47-51. DOI: 10.1007/s12020-015-0784-6
  • Bal, C., Büyükşekerci, M., Koca, C., Ağış, E.R., Erdoğan, S., Baran, P., Gündüzöz, M. & Yilmaz, Ö.H. (2016). The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure. Hum. Exp. Toxicol., 35, 915-20. DOI: 10.1177/0960327115608928
  • Barbagallo, M. & Dominguez, L.J. (2010). Magnesium and aging. Curr. Pharm. Des., 16, 832-9. DOI: 10.2174/138161210790883679
  • Barja, G. (2013).Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal, 19, 1420-45. DOI: 10.3390/nu13020463
  • Barzilai, N., Huffman, D.M., Muzumdar, R.H. & Bartke, A. (2012). The critical role of metabolic pathways in aging. Diabetes, 61, 1315-22. DOI: 10.2337/db11-1300
  • Bektas, A., Schurman, S.H., Sen R. & Ferrucci, L. (2017). Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol., 102, 977- 88. DOI: 10.1189/jlb.3RI0716-335R
  • Boult, J., Roberts, K., Brookes, M.J., Hughes, S., Bury, J.P., Cross, S.S., Anderson, G.J., Spychal, R., Iqbal, T. & Tselepis, C. (2008). Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin. Cancer Res., 14, 379-87. DOI: 10.1158/1078-0432.CCR-07-1054
  • Bourgonje, A.R., Abdulle, A.E., Kieneker, L.M., Gemert, S.B., Gansevoort, R.T., Bakker, S.J.L., Mulder, D.J., Pasch, A., Saleh, J., Gordijn, S.J. & Goor, H. (2021). Systemic oxidative stress, aging and the risk of cardiovascular events in the general female population. Front. Cardiovasc. Med., 8, 630543. DOI: 10.3389/fcvm.2021.630543
  • Campbell, J.D. (2001). Lifestyle, minerals and health. Med. Hypotheses, 57, 521-31. DOI: 10.1097/01.jnen.0000202887.22082.63
  • Conde, J.R. & Streit, W.J. (2006). Microglia in the aging brain. J. Neuropathol. Exp. Neurol., 65, 199-203. DOI: 10.1097/01.jnen.0000202887.22082.63
  • Crichton, R. (2016). Iron metabolism: from molecular mechanisms to clinical consequences. John Wiley & Sons.
  • Elmas, B., Karacan, M., Dervisoglu, P., Kosecik, M., İşgüven, Ş.P. & Bal, C. (2017). Dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in obese children and its relationship with inflammatory-cardiovascular markers. Anatolian J. Cardiol., 18, 361-369. DOI: 10.14744/AnatolJCardiol.2017.7740
  • Erel, O. & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem., 47, 326-32. DOI: 10.1016/j.clinbiochem.2014.09.026
  • Fischer, F., Hamann, A. & Osiewacz, H.D. (2012). Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci., 37, 284-92. DOI: 10.1016/j.tibs.2012.02.004
  • Flatt, T. (2012). A new definition of aging? Front. Genet., 3, 148. DOI: 10.3389/fgene.2012.00148 Ganong, W.F. (1995). Review of medical physiology. Dyn. Blood Lymph Flow, 30, 525-41.
  • Go, Y.M. & Jones, D.P. (2011). Cysteine/cystine redox signaling in cardiovascular disease. Free Radic. Biol. Med., 50, 495-509. DOI: 10.1016/j.freeradbiomed.2010.11.029
  • Gümüşyayla, Ş., Vural, G., Bektas, H., Neselioglu, S., Deniz, O. & Erel, Ö. (2016). Evaluation of dynamic thiol-disulphide homeostasis in patients with epilepsy. Epilepsi, 22, 86-92.
  • Halliwell, B. (2020). Reflections of an aging free radical. Free Radic. Biol. Med., 161, 234-45. DOI: 10.1016/j.freeradbiomed.2020.10.010
  • Higdon, J. & Drake, V.J. (2012). Potassium. In: An Evidence-Based Approach to Vitamins and Mineral. Eds: Higdon, J. & Drake, V.J. Thieme Press, 172 p.
  • Hurrell, R.F. (1997). Bioavailability of iron. Eur. J. Clin. Nutr., 51, 4-8.
  • Jones, D.P. & Liang, Y. (2009). Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med., 47, 329-38. DOI: 10.1016/j.freeradbiomed.2009.08.021
  • Karaman, Y.K., Novgorodtseva, T.P. & Yan’kova, V.I. (2013). Effects on Alimentary High-Fat Diet on Thiol Disulfide Homeostasis in Rats. Bull. Exp. Biol. Med., 155, 752-756. DOI: 10.1007/s10517- 013-2244-8
  • Killilea, D.W., Wong, S.L., Cahaya, H. S., Atamna, H. & Ames, B.N. (2004). Iron accumulation during cellular senescence. Ann. N. Y. Acad. Sci., 1019, 365-7. DOI: 10.1196/annals.1297.063
  • Korkmaz, V., Kurdoglu, Z., Alisik, M., Cetin, O., Korkmaz, H., Surer, H. & Erel, O. (2016). Impairment of thiol-disulfide homeostasis in preeclampsia. J. Matern. Neonatal. Med., 29, 3848-53. DOI: 10.3109/14767058.2016.1149561
  • Kulaksizoglu, B. & Kulaksizoglu S. (2017). Thiol/disulfide homeostasis in patients with panic disorder. Int. J. Clin. Med., 8(1), 34-41. DOI: 10.4236/ijcm.2017.81004
  • Lansdown, A.B.G. (2002). Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen., 10, 271-285. DOI: 10.1046/j.1524-475X.2002.10502.x
  • Matteucci, E. & Giampietro, O. (2010). Thiol signalling network with an eye to diabetes. Molecules, 15,(12) 8890-8903. DOI: 10.3390/molecules15128890
  • Michaylova, V. & Illkova, P.P. (1971). The liquit-state, iodideselective electrode. Anal. Chim. Acta, 53, 194.
  • Mikhail, N. & Ehsanipoor, K. (1999). Ionized serum magnesium in type 2 diabetes mellitus: its correlation with total serum magnesium and hemoglobin A1c levels. South Med. J., 92, 1162- 6. DOI: 10.1097/00007611-199912000-00005
  • Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., Yongvanit, P., Kawanishi, S. & Murata, M. (2014). Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 16, 193-217. DOI: 10.3390/ijms16010193
  • Torti, S.V. & Torti, F.M. (2013). Iron and cancer: More or to be mined. Nat. Rev. Cancer, 13, 342-55. DOI: 10.1038/nrc3495
  • Touitou, Y., Godard, J. P., Ferment, O., Chastang, C., Proust, J., Bogdan, A., Auzeby, A. & Touitou, C. (1987). Prevalence of magnesium and potassium deficiencies in the elderly. Clin. Chem., 33, 518-23.
  • Turell, L., Radi, R. & Alvarez, B. (2013). The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol. Med., 65, 244-53. DOI: 10.1016/j.freeradbiomed.2013.05.050
  • Vural, G., Gumusyayla, S., Bektas, H., Deniz, O., Alisik, M. & Erel, O. (2017). Impairment of dynamic thiol-disulphide homeostasis in patients with idiopathic Parkinson’s disease and its relationship with clinical stage of disease. Clin. Neurol. Neurosurg., 153, 50-55. DOI: 10.1016/j.clineuro.2016.12.009.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Biyokimya
Bölüm Makaleler
Yazarlar

Recai Aci 0000-0002-1517-3356

Gülay Çiftci 0000-0001-5384-2381

Furkan Ümit 0009-0004-3556-5519

Pınar Kar 0000-0002-2305-0428

Mustafa Ermiş 0000-0003-2267-1238

Özüm Çaka 0009-0004-8682-7793

Erken Görünüm Tarihi 14 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 15 Şubat 2024
Kabul Tarihi 29 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Aci, R., Çiftci, G., Ümit, F., Kar, P., vd. (2024). Yaşlanmada tiyol/disülfür Homeostazisi ve Bazı Mineraller. Journal of Anatolian Environmental and Animal Sciences, 9(2), 190-195. https://doi.org/10.35229/jaes.1436383


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS