Organik atıkların yönetiminde elektrik, ısı, biyo-gübre gibi faydalı ürünlerin eldesine imkân sağlayarak, doğal kaynakların sürdürülebilirliğini destekleyen yenilenebilir nitelikteki biyokütle enerjisinin önemi her geçen gün artmaktadır. Karanlık fermantasyon (KF) ile biyokütleden biyohidrojen üretimi sürdürülebilir ve daha temiz bir teknoloji olması ile öne çıkmaktadır. Tamamlayıcı özelliklere sahip birden fazla atığın birlikte fermantasyonu, daha yüksek biyohidrojen verimliliği elde etmek için umut verici bir yaklaşım olarak değerlendirilmektedir. Bu çalışmada mevsimlere ve arz-talep ilişkisine bağlı olarak işletme koşulları değişiklik gösterebilen meyve suyu üretimi endüstrisi atıkları (MSA) ve kentsel nitelikli arıtma çamurlarının (KAÇ), KF prosesi önderliğinde farklı substrat karışım oranlarında biyohidrojen üretimine etkisi araştırılmıştır. Bu amaçla biyoreaktörlerdeki karışımların toplam katı madde (TKM) oranı %8 olacak şekilde, KAÇ ve MSA içeriği 50:50,75:25 ve 25:75 olan üç farklı deney seti hazırlanmıştır. Anaerobik biyoreaktörler mezofilik sıcaklıkta kesikli sistemde işletilerek biyogaz/biyohidrojen üretim potansiyeli incelenmiştir. Fermantasyon süresi sonunda biyoreaktördeki KAÇ oranının %25’ten, %50 ve %75’e çıkması ile biyohidrojen üretim potansiyelinin sırası ile %14 ve %39,9 oranında artış gösterdiği belirlenmiştir. Bununla birlikte tüm biyoreaktörlerde çözünebilir kimyasal oksijen ihtiyacı (çKOİ) ve karbonhidrat içeriklerinin sırası ile %14-18 ve %54-64 arasında giderildiği tespit edilmiştir. Modifiye Gompertz kinetik modeli tüm biyoreaktörler için deneysel verilere en iyi uyan model (R2≥0,9949) olarak belirlenmiştir.
Anadolu Çevre ve Hayvancılık Dergisi (Journal of Anatolian Environmental and Animal Sciences)’ne makale olarak sunduğum “Arıtma Çamuru ve Gıda Endüstrisi Atıklarından Karanlık Fermentasyon ile Biyohidrojen Üretimi: Substrat Derişiminin Etkisi” başlıklı çalışmada deneysel çalışmalar, verilerin değerlendirilmesi, grafiklerin hazırlanması, makale yazım süreci vb. tüm faaliyetleri tek başıma yaptım. Başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğim, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandım. Bu ifadelerin aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim. 09/10/24
Yazar
Dr. Öğr. Üyesi Habibe Elif GÜLŞEN AKBAY
Destekleyen Kurum
Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
2023-1-AP1-4855
Teşekkür
Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne desteklerinden ötürü teşekkür ederim (BAP Proje No: 2023-1-AP1-4855).
Kaynakça
Abe, J.O., Popoola, A.P.I., Ajenifuja, E. & Popoola,
O.M. (2019). Hydrogen energy, economy and
storage: Review and recommendation.
International Journal of Hydrogen Energy,
44(29), 15072-15086. DOI:
10.1016/j.ijhydene.2019.04.068
Abubackar, H.N., Keskin, T., Yazgin, O., Gunay, B.,
Arslan, K. & Azbar, N. (2019). Biohydrogen
production from autoclaved fruit and vegetable
wastes by dry fermentation under thermophilic
condition. International Journal of Hydrogen
Energy, 44(34), 18776-18784. DOI:
10.1016/j.ijhydene.2018.12.068
Alemahdi, N., Che Man, H., Abd Rahman, N., Nasirian,
N. & Yang, Y. (2015). Enhanced mesophilic bio-
hydrogen production of raw rice straw and
activated sewage sludge by co-digestion.
International Journal of Hydrogen Energy,
40(46), 16033-16044. DOI:
10.1016/j.ijhydene.2015.08.106
Alibardi, L. & Cossu, R. (2016). Effects of carbohydrate,
protein and lipid content of organic waste on
hydrogen production and fermentation products.
Waste Management, 47, 69-77. DOI:
10.1016/j.wasman.2015.07.049
APHA. (1995). Standard methods for the examination of
water and wastewater (16th ed.). Washington.
Chai, A., Wong, Y.S., Ong, S.A., Aminah Lutpi, N.,
Sam, S.T., Kee, W.C. & Ng, H.H. (2021).
Haldane-Andrews substrate inhibition kinetics for
pilot scale thermophilic anaerobic degradation of
sugarcane vinasse. Bioresource Technology, 336,
125319. DOI: 10.1016/j.biortech.2021.125319
Córdova-Lizama, A., Carrera-Figueiras, C., Palacios,
A., Castro-Olivera, P.M. & Ruiz-Espinoza, J.
(2022). Improving hydrogen production from the
anaerobic digestion of waste activated sludge:
Effects of cobalt and iron zero valent
nanoparticles. International Journal of Hydrogen
Energy, 47(70), 30074-30084. DOI:
10.1016/j.ijhydene.2022.06.187
Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. &
Yu, Z. (2009). Hydrogen production
characteristics of the organic fraction of municipal
solid wastes by anaerobic mixed culture
fermentation. International Journal of Hydrogen
Energy, 34(2), 812-820. DOI:
10.1016/j.ijhydene.2008.11.031
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.
& Smith, F. (1956). Colorimetric method for
determination of sugars and related substances.
Analytical Chemistry, 28, 350-356.
EPA. (1996). Method 2540B and 2540E, Test Methods for
Eva2001ing Solid Waste Physical/Chemical
Methods, SW-846, 3r.
EPA. (2001). Method 1684, Total, Fixed, and Volatile
Solids in Water, Solids, and Biosolids, U.S.
EPA. (2004). Method 9045D, Soil and Waste pH, part of
Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods. In Hazardous Waste
Test Methods / SW-846, 1-5.
Feng, L., Yan, Y. & Chen, Y. (2011). Co-fermentation of
waste activated sludge with food waste for short-
chain fatty acids production: Effect of pH at
ambient temperature. Frontiers of Environmental
Science and Engineering in China, 5(4), 623-632.
DOI: 10.1007/S11783-011-0334-2
Gulsen Akbay, H.E. (2024). Anaerobic mono and co-
digestion of agro-industrial waste and municipal
sewage sludge: Biogas production potential,
kinetic modelling, and digestate characteristics.
Fuel, 355, 129468. DOI:
10.1016/j.fuel.2023.129468
Gulsen Akbay, H.E., Dizge, N. & Kumbur, H. (2021).
Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal
sewage sludge with mechanical, chemical,
thermal, and hybrid pretreatment. Bioresource
Technology, 340, 125688. DOI:
10.1016/j.biortech.2021.125688
Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I.
(2002). Sustainable fermentative hydrogen
production: challenges for process optimisation.
International Journal of Hydrogen Energy,
27(11-12), 1339-1347. DOI: 10.1016/s0360-
3199(02)00090-3
Hussien, M., Jadhav, D.A., Le, T.T.Q., Jang, J.H., Jang,
J.K. & Chae, K.J. (2024). Tuning dark
fermentation operational conditions for improved
biohydrogen yield during co-digestion of swine
manure and food waste. Process Safety and
Environmental Protection, 187, 1496-1507. DOI:
10.1016/j.psep.2024.05.068
IEA, International Energy Agency, (2018). World
Energy Outlook 2018. (24 Mayıs 2024)
IEA, International Energy Agency, (2021). World
Energy Outlook 2021. (24 Mayıs 2024)
Kainthola, J., Kalamdhad, A.S., Goud, V.V. & Goel, R.
(2019). Fungal pretreatment and associated
kinetics of rice straw hydrolysis to accelerate
methane yield from anaerobic digestion.
Bioresource Technology, 286, 121368. DOI:
10.1016/j.biortech.2019.121368
Koch, K., Lippert, T. & Drewes, J.E. (2017). The role of
inoculum’s origin on the methane yield of
different substrates in biochemical methane
potential (BMP) tests. Bioresource Technology,
243, 457-463. DOI:
10.1016/j.biortech.2017.06.142
Kriswantoro, J.A. & Chu, C.Y. (2024). Biohydrogen
production kinetics from cacao pod husk
hydrolysate in dark fermentations: Effect of
pretreatment, substrate concentration, and
inoculum. Journal of Cleaner Production, 434,
140407. DOI: 10.1016/j.jclepro.2023.140407
Li, C. & Fang, H.H.P. (2007). Fermentative hydrogen
production from wastewater and solid wastes by
mixed cultures. Critical Reviews in
Environmental Science and Technology, 37(1), 1-
39. DOI: 10.1080/10643380600729071
Liu, D., Li, R.Y., Ji, M. & Cai, Y.M. (2013). Enhanced
hydrogen and methane production from sewage
sludge by addition of cornstalk in two-stage
fermentation process. Asian Journal of Chemistry,
25(12), 6535-6539. DOI:
10.14233/ajchem.2013.14347
Liu, D., Sun, Y., Li, Y. & Lu, Y. (2017). Perturbation of
formate pathway and NADH pathway acting on
the biohydrogen production. Scientific Reports,
7(1), 1-8. DOI: 10.1038/s41598-017-10191-7
Ma, K., Zhao, H., Zhang, C., Lu, Y. & Xing, X.H.
(2012). Impairment of NADH dehydrogenase for
increased hydrogen production and its effect on
metabolic flux redistribution in wild strain and
mutants of Enterobacter aerogenes. International
Journal of Hydrogen Energy, 37(21), 15875-
15885. DOI: 10.1016/j.ijhydene.2012.08.017
Machhirake, N.P., Vanapalli, K.R., Kumar, S. &
Mohanty, B. (2024). Biohydrogen from waste
feedstocks: An energy opportunity for
decarbonization in developing countries.
Environmental Research, 252, 119028. DOI:
10.1016/j.envres.2024.119028
Miranzadeh, M.B., Jafarsalehi, M., Akram, J.,
Ebrahimi, M., Mazaheri, A. & Mashayekh, M.
(2024). Boosting biogas production in the
wastewater treatment plants: A narrative review
on co-digestion of sewage sludge with internal
and external organic waste. Bioresource
Technology Reports, 26, 101856. DOI:
10.1016/j.biteb.2024.101856
Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D. & Kim,
S.H. (2013). Optimization of batch dilute-acid
hydrolysis for biohydrogen production from red
algal biomass. International Journal of Hydrogen
Energy, 38(14), 6130-6136. DOI:
10.1016/j.ijhydene.2013.01.050
Ren, Y., Tang, S., Hong, F., Jiang, W., Liu, Z., Lu, H.,
… & Si, B. (2023). Effects of milli-magnetite on
biohydrogen production from potato peels:
Insight of metabolism mechanisms. Fuel, 348,
128576. DOI: 10.1016/j.fuel.2023.128576
Sarangi, P.K. & Nanda, S. (2020). Biohydrogen
Production Through Dark Fermentation.
Chemical Engineering & Technology, 43(4), 601-
612. DOI: 10.1002/ceat.201900452
Sato, O., Suzuki, Y., Sato, Y., Sasaki, S. & Sonoki, T.
(2015). Water-insoluble material from apple
pomace makes changes in intracellular
NAD+/NADH ratio and pyrophosphate content
and stimulates fermentative production of
hydrogen. Journal of Bioscience and
Bioengineering, 119(5), 543-547. DOI:
10.1016/j.jbiosc.2014.10.017
Sillero, L., Solera, R. & Perez, M. (2023). Effect of
temperature on biohydrogen and biomethane
production using a biochemical potential test with
different mixtures of sewage sludge, vinasse and
poultry manure. Journal of Cleaner Production,
382, 135237. DOI:
10.1016/j.jclepro.2022.135237
Singh, T., Alhazmi, A., Mohammad, A., Srivastava, N.,
Haque, S., Sharma, S., … & Gupta, V.K.
(2021). Integrated biohydrogen production via
lignocellulosic waste: Opportunity, challenges &
future prospects. Bioresource Technology, 338,
125511. DOI: 10.1016/j.biortech.2021.125511
Taşkan, B., Köroğlu, E.O. & Taşkan, E. (2022).
Cladophora sp. as a sustainable feedstock for dark
fermentative biohydrogen production.
International Journal of Hydrogen Energy,
47(34), 15410-15418. DOI:
10.1016/j.ijhydene.2022.03.024
Vardar-Schara, G., Maeda, T. & Wood, T.K. (2008).
Metabolically engineered bacteria for producing
hydrogen via fermentation. Microbial
Biotechnology, 1(2), 107. DOI: 10.1111/J.1751-
7915.2007.00009.x
Wainaina, S., Lukitawesa, Kumar Awasthi, M. &
Taherzadeh, M.J. (2019). Bioengineering of
anaerobic digestion for volatile fatty acids,
hydrogen or methane production: A critical
review. Bioengineered, 10(1), 437. DOI:
10.1080/21655979.2019.1673937
Xiao, B.Y. & Liu, J.X. (2006). Effects of thermally
pretreated temperature on bio-hydrogen
production from sewage sludge. Journal of
Environmental Sciences, 18(1), 6-12.
Xiao, B. & Liu, J. (2009). Effects of various pretreatments
on biohydrogen production from sewage sludge.
Chinese Science Bulletin, 54(12), 2038-2044.
DOI: 10.1007/S11434-009-0100-z
Yang, G. & Wang, J. (2017). Fermentative hydrogen
production from sewage sludge. Critical Reviews
in Environmental Science and Technology,
47(14), 1219-1281. DOI:
10.1080/10643389.2017.1348107
Yang, G. & Wang, J. (2018). Various additives for
improving dark fermentative hydrogen
production: A review. Renewable and Sustainable
Energy Reviews, 95, 130-146. DOI:
10.1016/j.rser.2018.07.029
Yang, G., Hu, Y. & Wang, J. (2019). Biohydrogen
production from co-fermentation of fallen leaves
and sewage sludge. Bioresource Technology, 285,
121342. DOI: 10.1016/j.biortech.2019.121342
Yang, G. & Wang, J. (2019). Biohydrogen production by
co-fermentation of sewage sludge and grass
residue: Effect of various substrate
concentrations. Fuel, 237, 1203-1208. DOI:
10.1016/j.fuel.2018.10.026
Yin, Y., Chen, Y. & Wang, J. (2021). Co-fermentation of
sewage sludge and algae and Fe2+ addition for
enhancing hydrogen production. International
Journal of Hydrogen Energy, 46(13), 8950-8960.
DOI: 10.1016/j.ijhydene.2021.01.009
Zhang, H., Fu, Z., Guan, D., Zhao, J., Wang, Y., Zhang,
Q., … & Wang, D. (2023). A comprehensive
review on food waste anaerobic co-digestion:
Current situation and research prospect. Process
Safety and Environmental Protection, 179, 546-
558. DOI: 10.1016/j.psep.2023.09.030
Zhou, J., Olson, D.G., Lanahan, A.A., Tian, L.,
Murphy, S.J.L., Lo, J. & Lynd, L.R. (2015).
Physiological roles of pyruvate ferredoxin
oxidoreductase and pyruvate formate-lyase in
Thermoanaerobacterium saccharolyticum
JW/SL-YS485. Biotechnology for Biofuels, 8(1),
1-14. DOI: 10.1186/s13068-015-0304-1
Biohydrogen Production from Sewage Sludge and Fruit Juice Industry Wastes By Dark Fermentation: Effect of Various Substrate Concentrations
The importance of renewable biomass energy, which supports the sustainability of natural resources by enabling the production of useful products such as electricity, heat and bio-fertilizer in the management of organic waste, is increasing day by day. Biohydrogen production from biomass via dark fermentation (DF) stands out as a sustainable and cleaner technology. Co-fermentation of multiple wastes with complementary properties is considered a promising approach to achieve higher biohydrogen efficiency. In this study, the effects of fruit juice production industry wastes (MSA) whose operating conditions may vary depending on the seasons and supply-demand relationship and urban sewage sludge (KAÇ), on biohydrogen production at different substrate mixing ratios under the leadership of the DF process were investigated. For this purpose, three different experimental sets were prepared with KAÇ and MSA contents of 50:50, 75:25, and 25:75, so that the total solid matter (TS%) ratio of the mixtures in the bioreactors would be 8%. Biogas/biohydrogen production potential was investigated by operating anaerobic bioreactors in a batch system at mesophilic temperature. It was determined that at the end of the fermentation period, as the KAÇ ratio in the bioreactor increased from 25% to 50% and 75%, the biohydrogen production potential increased by 14% and 39.9%, respectively. Besides, in all bioreactors, soluble chemical oxygen demand (sCOD) and carbohydrate contents were reduced between 14-18% and 54-64%, respectively. The Modified Gompertz equation was determined as the model that best fits the experimental data for all bioreactors (R2≥0.9949).
Abe, J.O., Popoola, A.P.I., Ajenifuja, E. & Popoola,
O.M. (2019). Hydrogen energy, economy and
storage: Review and recommendation.
International Journal of Hydrogen Energy,
44(29), 15072-15086. DOI:
10.1016/j.ijhydene.2019.04.068
Abubackar, H.N., Keskin, T., Yazgin, O., Gunay, B.,
Arslan, K. & Azbar, N. (2019). Biohydrogen
production from autoclaved fruit and vegetable
wastes by dry fermentation under thermophilic
condition. International Journal of Hydrogen
Energy, 44(34), 18776-18784. DOI:
10.1016/j.ijhydene.2018.12.068
Alemahdi, N., Che Man, H., Abd Rahman, N., Nasirian,
N. & Yang, Y. (2015). Enhanced mesophilic bio-
hydrogen production of raw rice straw and
activated sewage sludge by co-digestion.
International Journal of Hydrogen Energy,
40(46), 16033-16044. DOI:
10.1016/j.ijhydene.2015.08.106
Alibardi, L. & Cossu, R. (2016). Effects of carbohydrate,
protein and lipid content of organic waste on
hydrogen production and fermentation products.
Waste Management, 47, 69-77. DOI:
10.1016/j.wasman.2015.07.049
APHA. (1995). Standard methods for the examination of
water and wastewater (16th ed.). Washington.
Chai, A., Wong, Y.S., Ong, S.A., Aminah Lutpi, N.,
Sam, S.T., Kee, W.C. & Ng, H.H. (2021).
Haldane-Andrews substrate inhibition kinetics for
pilot scale thermophilic anaerobic degradation of
sugarcane vinasse. Bioresource Technology, 336,
125319. DOI: 10.1016/j.biortech.2021.125319
Córdova-Lizama, A., Carrera-Figueiras, C., Palacios,
A., Castro-Olivera, P.M. & Ruiz-Espinoza, J.
(2022). Improving hydrogen production from the
anaerobic digestion of waste activated sludge:
Effects of cobalt and iron zero valent
nanoparticles. International Journal of Hydrogen
Energy, 47(70), 30074-30084. DOI:
10.1016/j.ijhydene.2022.06.187
Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. &
Yu, Z. (2009). Hydrogen production
characteristics of the organic fraction of municipal
solid wastes by anaerobic mixed culture
fermentation. International Journal of Hydrogen
Energy, 34(2), 812-820. DOI:
10.1016/j.ijhydene.2008.11.031
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.
& Smith, F. (1956). Colorimetric method for
determination of sugars and related substances.
Analytical Chemistry, 28, 350-356.
EPA. (1996). Method 2540B and 2540E, Test Methods for
Eva2001ing Solid Waste Physical/Chemical
Methods, SW-846, 3r.
EPA. (2001). Method 1684, Total, Fixed, and Volatile
Solids in Water, Solids, and Biosolids, U.S.
EPA. (2004). Method 9045D, Soil and Waste pH, part of
Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods. In Hazardous Waste
Test Methods / SW-846, 1-5.
Feng, L., Yan, Y. & Chen, Y. (2011). Co-fermentation of
waste activated sludge with food waste for short-
chain fatty acids production: Effect of pH at
ambient temperature. Frontiers of Environmental
Science and Engineering in China, 5(4), 623-632.
DOI: 10.1007/S11783-011-0334-2
Gulsen Akbay, H.E. (2024). Anaerobic mono and co-
digestion of agro-industrial waste and municipal
sewage sludge: Biogas production potential,
kinetic modelling, and digestate characteristics.
Fuel, 355, 129468. DOI:
10.1016/j.fuel.2023.129468
Gulsen Akbay, H.E., Dizge, N. & Kumbur, H. (2021).
Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal
sewage sludge with mechanical, chemical,
thermal, and hybrid pretreatment. Bioresource
Technology, 340, 125688. DOI:
10.1016/j.biortech.2021.125688
Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I.
(2002). Sustainable fermentative hydrogen
production: challenges for process optimisation.
International Journal of Hydrogen Energy,
27(11-12), 1339-1347. DOI: 10.1016/s0360-
3199(02)00090-3
Hussien, M., Jadhav, D.A., Le, T.T.Q., Jang, J.H., Jang,
J.K. & Chae, K.J. (2024). Tuning dark
fermentation operational conditions for improved
biohydrogen yield during co-digestion of swine
manure and food waste. Process Safety and
Environmental Protection, 187, 1496-1507. DOI:
10.1016/j.psep.2024.05.068
IEA, International Energy Agency, (2018). World
Energy Outlook 2018. (24 Mayıs 2024)
IEA, International Energy Agency, (2021). World
Energy Outlook 2021. (24 Mayıs 2024)
Kainthola, J., Kalamdhad, A.S., Goud, V.V. & Goel, R.
(2019). Fungal pretreatment and associated
kinetics of rice straw hydrolysis to accelerate
methane yield from anaerobic digestion.
Bioresource Technology, 286, 121368. DOI:
10.1016/j.biortech.2019.121368
Koch, K., Lippert, T. & Drewes, J.E. (2017). The role of
inoculum’s origin on the methane yield of
different substrates in biochemical methane
potential (BMP) tests. Bioresource Technology,
243, 457-463. DOI:
10.1016/j.biortech.2017.06.142
Kriswantoro, J.A. & Chu, C.Y. (2024). Biohydrogen
production kinetics from cacao pod husk
hydrolysate in dark fermentations: Effect of
pretreatment, substrate concentration, and
inoculum. Journal of Cleaner Production, 434,
140407. DOI: 10.1016/j.jclepro.2023.140407
Li, C. & Fang, H.H.P. (2007). Fermentative hydrogen
production from wastewater and solid wastes by
mixed cultures. Critical Reviews in
Environmental Science and Technology, 37(1), 1-
39. DOI: 10.1080/10643380600729071
Liu, D., Li, R.Y., Ji, M. & Cai, Y.M. (2013). Enhanced
hydrogen and methane production from sewage
sludge by addition of cornstalk in two-stage
fermentation process. Asian Journal of Chemistry,
25(12), 6535-6539. DOI:
10.14233/ajchem.2013.14347
Liu, D., Sun, Y., Li, Y. & Lu, Y. (2017). Perturbation of
formate pathway and NADH pathway acting on
the biohydrogen production. Scientific Reports,
7(1), 1-8. DOI: 10.1038/s41598-017-10191-7
Ma, K., Zhao, H., Zhang, C., Lu, Y. & Xing, X.H.
(2012). Impairment of NADH dehydrogenase for
increased hydrogen production and its effect on
metabolic flux redistribution in wild strain and
mutants of Enterobacter aerogenes. International
Journal of Hydrogen Energy, 37(21), 15875-
15885. DOI: 10.1016/j.ijhydene.2012.08.017
Machhirake, N.P., Vanapalli, K.R., Kumar, S. &
Mohanty, B. (2024). Biohydrogen from waste
feedstocks: An energy opportunity for
decarbonization in developing countries.
Environmental Research, 252, 119028. DOI:
10.1016/j.envres.2024.119028
Miranzadeh, M.B., Jafarsalehi, M., Akram, J.,
Ebrahimi, M., Mazaheri, A. & Mashayekh, M.
(2024). Boosting biogas production in the
wastewater treatment plants: A narrative review
on co-digestion of sewage sludge with internal
and external organic waste. Bioresource
Technology Reports, 26, 101856. DOI:
10.1016/j.biteb.2024.101856
Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D. & Kim,
S.H. (2013). Optimization of batch dilute-acid
hydrolysis for biohydrogen production from red
algal biomass. International Journal of Hydrogen
Energy, 38(14), 6130-6136. DOI:
10.1016/j.ijhydene.2013.01.050
Ren, Y., Tang, S., Hong, F., Jiang, W., Liu, Z., Lu, H.,
… & Si, B. (2023). Effects of milli-magnetite on
biohydrogen production from potato peels:
Insight of metabolism mechanisms. Fuel, 348,
128576. DOI: 10.1016/j.fuel.2023.128576
Sarangi, P.K. & Nanda, S. (2020). Biohydrogen
Production Through Dark Fermentation.
Chemical Engineering & Technology, 43(4), 601-
612. DOI: 10.1002/ceat.201900452
Sato, O., Suzuki, Y., Sato, Y., Sasaki, S. & Sonoki, T.
(2015). Water-insoluble material from apple
pomace makes changes in intracellular
NAD+/NADH ratio and pyrophosphate content
and stimulates fermentative production of
hydrogen. Journal of Bioscience and
Bioengineering, 119(5), 543-547. DOI:
10.1016/j.jbiosc.2014.10.017
Sillero, L., Solera, R. & Perez, M. (2023). Effect of
temperature on biohydrogen and biomethane
production using a biochemical potential test with
different mixtures of sewage sludge, vinasse and
poultry manure. Journal of Cleaner Production,
382, 135237. DOI:
10.1016/j.jclepro.2022.135237
Singh, T., Alhazmi, A., Mohammad, A., Srivastava, N.,
Haque, S., Sharma, S., … & Gupta, V.K.
(2021). Integrated biohydrogen production via
lignocellulosic waste: Opportunity, challenges &
future prospects. Bioresource Technology, 338,
125511. DOI: 10.1016/j.biortech.2021.125511
Taşkan, B., Köroğlu, E.O. & Taşkan, E. (2022).
Cladophora sp. as a sustainable feedstock for dark
fermentative biohydrogen production.
International Journal of Hydrogen Energy,
47(34), 15410-15418. DOI:
10.1016/j.ijhydene.2022.03.024
Vardar-Schara, G., Maeda, T. & Wood, T.K. (2008).
Metabolically engineered bacteria for producing
hydrogen via fermentation. Microbial
Biotechnology, 1(2), 107. DOI: 10.1111/J.1751-
7915.2007.00009.x
Wainaina, S., Lukitawesa, Kumar Awasthi, M. &
Taherzadeh, M.J. (2019). Bioengineering of
anaerobic digestion for volatile fatty acids,
hydrogen or methane production: A critical
review. Bioengineered, 10(1), 437. DOI:
10.1080/21655979.2019.1673937
Xiao, B.Y. & Liu, J.X. (2006). Effects of thermally
pretreated temperature on bio-hydrogen
production from sewage sludge. Journal of
Environmental Sciences, 18(1), 6-12.
Xiao, B. & Liu, J. (2009). Effects of various pretreatments
on biohydrogen production from sewage sludge.
Chinese Science Bulletin, 54(12), 2038-2044.
DOI: 10.1007/S11434-009-0100-z
Yang, G. & Wang, J. (2017). Fermentative hydrogen
production from sewage sludge. Critical Reviews
in Environmental Science and Technology,
47(14), 1219-1281. DOI:
10.1080/10643389.2017.1348107
Yang, G. & Wang, J. (2018). Various additives for
improving dark fermentative hydrogen
production: A review. Renewable and Sustainable
Energy Reviews, 95, 130-146. DOI:
10.1016/j.rser.2018.07.029
Yang, G., Hu, Y. & Wang, J. (2019). Biohydrogen
production from co-fermentation of fallen leaves
and sewage sludge. Bioresource Technology, 285,
121342. DOI: 10.1016/j.biortech.2019.121342
Yang, G. & Wang, J. (2019). Biohydrogen production by
co-fermentation of sewage sludge and grass
residue: Effect of various substrate
concentrations. Fuel, 237, 1203-1208. DOI:
10.1016/j.fuel.2018.10.026
Yin, Y., Chen, Y. & Wang, J. (2021). Co-fermentation of
sewage sludge and algae and Fe2+ addition for
enhancing hydrogen production. International
Journal of Hydrogen Energy, 46(13), 8950-8960.
DOI: 10.1016/j.ijhydene.2021.01.009
Zhang, H., Fu, Z., Guan, D., Zhao, J., Wang, Y., Zhang,
Q., … & Wang, D. (2023). A comprehensive
review on food waste anaerobic co-digestion:
Current situation and research prospect. Process
Safety and Environmental Protection, 179, 546-
558. DOI: 10.1016/j.psep.2023.09.030
Zhou, J., Olson, D.G., Lanahan, A.A., Tian, L.,
Murphy, S.J.L., Lo, J. & Lynd, L.R. (2015).
Physiological roles of pyruvate ferredoxin
oxidoreductase and pyruvate formate-lyase in
Thermoanaerobacterium saccharolyticum
JW/SL-YS485. Biotechnology for Biofuels, 8(1),
1-14. DOI: 10.1186/s13068-015-0304-1
Gülşen Akbay, H. E. (2024). Arıtma Çamuru ve Gıda Endüstrisi Atıklarından Karanlık Fermentasyon ile Biyohidrojen Üretimi: Substrat Derişiminin Etkisi. Journal of Anatolian Environmental and Animal Sciences, 9(4), 623-631. https://doi.org/10.35229/jaes.1564156
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS