Araştırma Makalesi
BibTex RIS Kaynak Göster

Arıtma Çamuru ve Gıda Endüstrisi Atıklarından Karanlık Fermentasyon ile Biyohidrojen Üretimi: Substrat Derişiminin Etkisi

Yıl 2024, Cilt: 9 Sayı: 4, 623 - 631, 31.12.2024
https://doi.org/10.35229/jaes.1564156

Öz

Organik atıkların yönetiminde elektrik, ısı, biyo-gübre gibi faydalı ürünlerin eldesine imkân sağlayarak, doğal kaynakların sürdürülebilirliğini destekleyen yenilenebilir nitelikteki biyokütle enerjisinin önemi her geçen gün artmaktadır. Karanlık fermantasyon (KF) ile biyokütleden biyohidrojen üretimi sürdürülebilir ve daha temiz bir teknoloji olması ile öne çıkmaktadır. Tamamlayıcı özelliklere sahip birden fazla atığın birlikte fermantasyonu, daha yüksek biyohidrojen verimliliği elde etmek için umut verici bir yaklaşım olarak değerlendirilmektedir. Bu çalışmada mevsimlere ve arz-talep ilişkisine bağlı olarak işletme koşulları değişiklik gösterebilen meyve suyu üretimi endüstrisi atıkları (MSA) ve kentsel nitelikli arıtma çamurlarının (KAÇ), KF prosesi önderliğinde farklı substrat karışım oranlarında biyohidrojen üretimine etkisi araştırılmıştır. Bu amaçla biyoreaktörlerdeki karışımların toplam katı madde (TKM) oranı %8 olacak şekilde, KAÇ ve MSA içeriği 50:50,75:25 ve 25:75 olan üç farklı deney seti hazırlanmıştır. Anaerobik biyoreaktörler mezofilik sıcaklıkta kesikli sistemde işletilerek biyogaz/biyohidrojen üretim potansiyeli incelenmiştir. Fermantasyon süresi sonunda biyoreaktördeki KAÇ oranının %25’ten, %50 ve %75’e çıkması ile biyohidrojen üretim potansiyelinin sırası ile %14 ve %39,9 oranında artış gösterdiği belirlenmiştir. Bununla birlikte tüm biyoreaktörlerde çözünebilir kimyasal oksijen ihtiyacı (çKOİ) ve karbonhidrat içeriklerinin sırası ile %14-18 ve %54-64 arasında giderildiği tespit edilmiştir. Modifiye Gompertz kinetik modeli tüm biyoreaktörler için deneysel verilere en iyi uyan model (R2≥0,9949) olarak belirlenmiştir.

Etik Beyan

Anadolu Çevre ve Hayvancılık Dergisi (Journal of Anatolian Environmental and Animal Sciences)’ne makale olarak sunduğum “Arıtma Çamuru ve Gıda Endüstrisi Atıklarından Karanlık Fermentasyon ile Biyohidrojen Üretimi: Substrat Derişiminin Etkisi” başlıklı çalışmada deneysel çalışmalar, verilerin değerlendirilmesi, grafiklerin hazırlanması, makale yazım süreci vb. tüm faaliyetleri tek başıma yaptım. Başka kaynaklardan aldığım bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğim, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandım. Bu ifadelerin aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimi beyan ederim. 09/10/24 Yazar Dr. Öğr. Üyesi Habibe Elif GÜLŞEN AKBAY

Destekleyen Kurum

Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

2023-1-AP1-4855

Teşekkür

Mersin Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne desteklerinden ötürü teşekkür ederim (BAP Proje No: 2023-1-AP1-4855).

Kaynakça

  • Abe, J.O., Popoola, A.P.I., Ajenifuja, E. & Popoola, O.M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086. DOI: 10.1016/j.ijhydene.2019.04.068
  • Abubackar, H.N., Keskin, T., Yazgin, O., Gunay, B., Arslan, K. & Azbar, N. (2019). Biohydrogen production from autoclaved fruit and vegetable wastes by dry fermentation under thermophilic condition. International Journal of Hydrogen Energy, 44(34), 18776-18784. DOI: 10.1016/j.ijhydene.2018.12.068
  • Alemahdi, N., Che Man, H., Abd Rahman, N., Nasirian, N. & Yang, Y. (2015). Enhanced mesophilic bio- hydrogen production of raw rice straw and activated sewage sludge by co-digestion. International Journal of Hydrogen Energy, 40(46), 16033-16044. DOI: 10.1016/j.ijhydene.2015.08.106
  • Alibardi, L. & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69-77. DOI: 10.1016/j.wasman.2015.07.049
  • APHA. (1995). Standard methods for the examination of water and wastewater (16th ed.). Washington.
  • Chai, A., Wong, Y.S., Ong, S.A., Aminah Lutpi, N., Sam, S.T., Kee, W.C. & Ng, H.H. (2021). Haldane-Andrews substrate inhibition kinetics for pilot scale thermophilic anaerobic degradation of sugarcane vinasse. Bioresource Technology, 336, 125319. DOI: 10.1016/j.biortech.2021.125319
  • Córdova-Lizama, A., Carrera-Figueiras, C., Palacios, A., Castro-Olivera, P.M. & Ruiz-Espinoza, J. (2022). Improving hydrogen production from the anaerobic digestion of waste activated sludge: Effects of cobalt and iron zero valent nanoparticles. International Journal of Hydrogen Energy, 47(70), 30074-30084. DOI: 10.1016/j.ijhydene.2022.06.187
  • Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. & Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34(2), 812-820. DOI: 10.1016/j.ijhydene.2008.11.031
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
  • EPA. (1996). Method 2540B and 2540E, Test Methods for Eva2001ing Solid Waste Physical/Chemical Methods, SW-846, 3r.
  • EPA. (2001). Method 1684, Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids, U.S.
  • EPA. (2004). Method 9045D, Soil and Waste pH, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. In Hazardous Waste Test Methods / SW-846, 1-5.
  • Feng, L., Yan, Y. & Chen, Y. (2011). Co-fermentation of waste activated sludge with food waste for short- chain fatty acids production: Effect of pH at ambient temperature. Frontiers of Environmental Science and Engineering in China, 5(4), 623-632. DOI: 10.1007/S11783-011-0334-2
  • Gulsen Akbay, H.E. (2024). Anaerobic mono and co- digestion of agro-industrial waste and municipal sewage sludge: Biogas production potential, kinetic modelling, and digestate characteristics. Fuel, 355, 129468. DOI: 10.1016/j.fuel.2023.129468
  • Gulsen Akbay, H.E., Dizge, N. & Kumbur, H. (2021). Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment. Bioresource Technology, 340, 125688. DOI: 10.1016/j.biortech.2021.125688
  • Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27(11-12), 1339-1347. DOI: 10.1016/s0360- 3199(02)00090-3
  • Hussien, M., Jadhav, D.A., Le, T.T.Q., Jang, J.H., Jang, J.K. & Chae, K.J. (2024). Tuning dark fermentation operational conditions for improved biohydrogen yield during co-digestion of swine manure and food waste. Process Safety and Environmental Protection, 187, 1496-1507. DOI: 10.1016/j.psep.2024.05.068
  • IEA, International Energy Agency, (2018). World Energy Outlook 2018. (24 Mayıs 2024)
  • IEA, International Energy Agency, (2021). World Energy Outlook 2021. (24 Mayıs 2024)
  • Kainthola, J., Kalamdhad, A.S., Goud, V.V. & Goel, R. (2019). Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresource Technology, 286, 121368. DOI: 10.1016/j.biortech.2019.121368
  • Koch, K., Lippert, T. & Drewes, J.E. (2017). The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresource Technology, 243, 457-463. DOI: 10.1016/j.biortech.2017.06.142
  • Kriswantoro, J.A. & Chu, C.Y. (2024). Biohydrogen production kinetics from cacao pod husk hydrolysate in dark fermentations: Effect of pretreatment, substrate concentration, and inoculum. Journal of Cleaner Production, 434, 140407. DOI: 10.1016/j.jclepro.2023.140407
  • Li, C. & Fang, H.H.P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1- 39. DOI: 10.1080/10643380600729071
  • Liu, D., Li, R.Y., Ji, M. & Cai, Y.M. (2013). Enhanced hydrogen and methane production from sewage sludge by addition of cornstalk in two-stage fermentation process. Asian Journal of Chemistry, 25(12), 6535-6539. DOI: 10.14233/ajchem.2013.14347
  • Liu, D., Sun, Y., Li, Y. & Lu, Y. (2017). Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Scientific Reports, 7(1), 1-8. DOI: 10.1038/s41598-017-10191-7
  • Ma, K., Zhao, H., Zhang, C., Lu, Y. & Xing, X.H. (2012). Impairment of NADH dehydrogenase for increased hydrogen production and its effect on metabolic flux redistribution in wild strain and mutants of Enterobacter aerogenes. International Journal of Hydrogen Energy, 37(21), 15875- 15885. DOI: 10.1016/j.ijhydene.2012.08.017
  • Machhirake, N.P., Vanapalli, K.R., Kumar, S. & Mohanty, B. (2024). Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries. Environmental Research, 252, 119028. DOI: 10.1016/j.envres.2024.119028
  • Miranzadeh, M.B., Jafarsalehi, M., Akram, J., Ebrahimi, M., Mazaheri, A. & Mashayekh, M. (2024). Boosting biogas production in the wastewater treatment plants: A narrative review on co-digestion of sewage sludge with internal and external organic waste. Bioresource Technology Reports, 26, 101856. DOI: 10.1016/j.biteb.2024.101856
  • Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D. & Kim, S.H. (2013). Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. International Journal of Hydrogen Energy, 38(14), 6130-6136. DOI: 10.1016/j.ijhydene.2013.01.050
  • Ren, Y., Tang, S., Hong, F., Jiang, W., Liu, Z., Lu, H., … & Si, B. (2023). Effects of milli-magnetite on biohydrogen production from potato peels: Insight of metabolism mechanisms. Fuel, 348, 128576. DOI: 10.1016/j.fuel.2023.128576
  • Sarangi, P.K. & Nanda, S. (2020). Biohydrogen Production Through Dark Fermentation. Chemical Engineering & Technology, 43(4), 601- 612. DOI: 10.1002/ceat.201900452
  • Sato, O., Suzuki, Y., Sato, Y., Sasaki, S. & Sonoki, T. (2015). Water-insoluble material from apple pomace makes changes in intracellular NAD+/NADH ratio and pyrophosphate content and stimulates fermentative production of hydrogen. Journal of Bioscience and Bioengineering, 119(5), 543-547. DOI: 10.1016/j.jbiosc.2014.10.017
  • Sillero, L., Solera, R. & Perez, M. (2023). Effect of temperature on biohydrogen and biomethane production using a biochemical potential test with different mixtures of sewage sludge, vinasse and poultry manure. Journal of Cleaner Production, 382, 135237. DOI: 10.1016/j.jclepro.2022.135237
  • Singh, T., Alhazmi, A., Mohammad, A., Srivastava, N., Haque, S., Sharma, S., … & Gupta, V.K. (2021). Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. Bioresource Technology, 338, 125511. DOI: 10.1016/j.biortech.2021.125511
  • Taşkan, B., Köroğlu, E.O. & Taşkan, E. (2022). Cladophora sp. as a sustainable feedstock for dark fermentative biohydrogen production. International Journal of Hydrogen Energy, 47(34), 15410-15418. DOI: 10.1016/j.ijhydene.2022.03.024
  • Vardar-Schara, G., Maeda, T. & Wood, T.K. (2008). Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology, 1(2), 107. DOI: 10.1111/J.1751- 7915.2007.00009.x
  • Wainaina, S., Lukitawesa, Kumar Awasthi, M. & Taherzadeh, M.J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437. DOI: 10.1080/21655979.2019.1673937
  • Xiao, B.Y. & Liu, J.X. (2006). Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge. Journal of Environmental Sciences, 18(1), 6-12.
  • Xiao, B. & Liu, J. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chinese Science Bulletin, 54(12), 2038-2044. DOI: 10.1007/S11434-009-0100-z
  • Yang, G. & Wang, J. (2017). Fermentative hydrogen production from sewage sludge. Critical Reviews in Environmental Science and Technology, 47(14), 1219-1281. DOI: 10.1080/10643389.2017.1348107
  • Yang, G. & Wang, J. (2018). Various additives for improving dark fermentative hydrogen production: A review. Renewable and Sustainable Energy Reviews, 95, 130-146. DOI: 10.1016/j.rser.2018.07.029
  • Yang, G., Hu, Y. & Wang, J. (2019). Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresource Technology, 285, 121342. DOI: 10.1016/j.biortech.2019.121342
  • Yang, G. & Wang, J. (2019). Biohydrogen production by co-fermentation of sewage sludge and grass residue: Effect of various substrate concentrations. Fuel, 237, 1203-1208. DOI: 10.1016/j.fuel.2018.10.026
  • Yin, Y., Chen, Y. & Wang, J. (2021). Co-fermentation of sewage sludge and algae and Fe2+ addition for enhancing hydrogen production. International Journal of Hydrogen Energy, 46(13), 8950-8960. DOI: 10.1016/j.ijhydene.2021.01.009
  • Zhang, H., Fu, Z., Guan, D., Zhao, J., Wang, Y., Zhang, Q., … & Wang, D. (2023). A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect. Process Safety and Environmental Protection, 179, 546- 558. DOI: 10.1016/j.psep.2023.09.030
  • Zhou, J., Olson, D.G., Lanahan, A.A., Tian, L., Murphy, S.J.L., Lo, J. & Lynd, L.R. (2015). Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biotechnology for Biofuels, 8(1), 1-14. DOI: 10.1186/s13068-015-0304-1

Biohydrogen Production from Sewage Sludge and Fruit Juice Industry Wastes By Dark Fermentation: Effect of Various Substrate Concentrations

Yıl 2024, Cilt: 9 Sayı: 4, 623 - 631, 31.12.2024
https://doi.org/10.35229/jaes.1564156

Öz

The importance of renewable biomass energy, which supports the sustainability of natural resources by enabling the production of useful products such as electricity, heat and bio-fertilizer in the management of organic waste, is increasing day by day. Biohydrogen production from biomass via dark fermentation (DF) stands out as a sustainable and cleaner technology. Co-fermentation of multiple wastes with complementary properties is considered a promising approach to achieve higher biohydrogen efficiency. In this study, the effects of fruit juice production industry wastes (MSA) whose operating conditions may vary depending on the seasons and supply-demand relationship and urban sewage sludge (KAÇ), on biohydrogen production at different substrate mixing ratios under the leadership of the DF process were investigated. For this purpose, three different experimental sets were prepared with KAÇ and MSA contents of 50:50, 75:25, and 25:75, so that the total solid matter (TS%) ratio of the mixtures in the bioreactors would be 8%. Biogas/biohydrogen production potential was investigated by operating anaerobic bioreactors in a batch system at mesophilic temperature. It was determined that at the end of the fermentation period, as the KAÇ ratio in the bioreactor increased from 25% to 50% and 75%, the biohydrogen production potential increased by 14% and 39.9%, respectively. Besides, in all bioreactors, soluble chemical oxygen demand (sCOD) and carbohydrate contents were reduced between 14-18% and 54-64%, respectively. The Modified Gompertz equation was determined as the model that best fits the experimental data for all bioreactors (R2≥0.9949).

Proje Numarası

2023-1-AP1-4855

Kaynakça

  • Abe, J.O., Popoola, A.P.I., Ajenifuja, E. & Popoola, O.M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086. DOI: 10.1016/j.ijhydene.2019.04.068
  • Abubackar, H.N., Keskin, T., Yazgin, O., Gunay, B., Arslan, K. & Azbar, N. (2019). Biohydrogen production from autoclaved fruit and vegetable wastes by dry fermentation under thermophilic condition. International Journal of Hydrogen Energy, 44(34), 18776-18784. DOI: 10.1016/j.ijhydene.2018.12.068
  • Alemahdi, N., Che Man, H., Abd Rahman, N., Nasirian, N. & Yang, Y. (2015). Enhanced mesophilic bio- hydrogen production of raw rice straw and activated sewage sludge by co-digestion. International Journal of Hydrogen Energy, 40(46), 16033-16044. DOI: 10.1016/j.ijhydene.2015.08.106
  • Alibardi, L. & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69-77. DOI: 10.1016/j.wasman.2015.07.049
  • APHA. (1995). Standard methods for the examination of water and wastewater (16th ed.). Washington.
  • Chai, A., Wong, Y.S., Ong, S.A., Aminah Lutpi, N., Sam, S.T., Kee, W.C. & Ng, H.H. (2021). Haldane-Andrews substrate inhibition kinetics for pilot scale thermophilic anaerobic degradation of sugarcane vinasse. Bioresource Technology, 336, 125319. DOI: 10.1016/j.biortech.2021.125319
  • Córdova-Lizama, A., Carrera-Figueiras, C., Palacios, A., Castro-Olivera, P.M. & Ruiz-Espinoza, J. (2022). Improving hydrogen production from the anaerobic digestion of waste activated sludge: Effects of cobalt and iron zero valent nanoparticles. International Journal of Hydrogen Energy, 47(70), 30074-30084. DOI: 10.1016/j.ijhydene.2022.06.187
  • Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K. & Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34(2), 812-820. DOI: 10.1016/j.ijhydene.2008.11.031
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
  • EPA. (1996). Method 2540B and 2540E, Test Methods for Eva2001ing Solid Waste Physical/Chemical Methods, SW-846, 3r.
  • EPA. (2001). Method 1684, Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids, U.S.
  • EPA. (2004). Method 9045D, Soil and Waste pH, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. In Hazardous Waste Test Methods / SW-846, 1-5.
  • Feng, L., Yan, Y. & Chen, Y. (2011). Co-fermentation of waste activated sludge with food waste for short- chain fatty acids production: Effect of pH at ambient temperature. Frontiers of Environmental Science and Engineering in China, 5(4), 623-632. DOI: 10.1007/S11783-011-0334-2
  • Gulsen Akbay, H.E. (2024). Anaerobic mono and co- digestion of agro-industrial waste and municipal sewage sludge: Biogas production potential, kinetic modelling, and digestate characteristics. Fuel, 355, 129468. DOI: 10.1016/j.fuel.2023.129468
  • Gulsen Akbay, H.E., Dizge, N. & Kumbur, H. (2021). Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment. Bioresource Technology, 340, 125688. DOI: 10.1016/j.biortech.2021.125688
  • Hawkes, F.R., Dinsdale, R., Hawkes, D.L. & Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27(11-12), 1339-1347. DOI: 10.1016/s0360- 3199(02)00090-3
  • Hussien, M., Jadhav, D.A., Le, T.T.Q., Jang, J.H., Jang, J.K. & Chae, K.J. (2024). Tuning dark fermentation operational conditions for improved biohydrogen yield during co-digestion of swine manure and food waste. Process Safety and Environmental Protection, 187, 1496-1507. DOI: 10.1016/j.psep.2024.05.068
  • IEA, International Energy Agency, (2018). World Energy Outlook 2018. (24 Mayıs 2024)
  • IEA, International Energy Agency, (2021). World Energy Outlook 2021. (24 Mayıs 2024)
  • Kainthola, J., Kalamdhad, A.S., Goud, V.V. & Goel, R. (2019). Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresource Technology, 286, 121368. DOI: 10.1016/j.biortech.2019.121368
  • Koch, K., Lippert, T. & Drewes, J.E. (2017). The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresource Technology, 243, 457-463. DOI: 10.1016/j.biortech.2017.06.142
  • Kriswantoro, J.A. & Chu, C.Y. (2024). Biohydrogen production kinetics from cacao pod husk hydrolysate in dark fermentations: Effect of pretreatment, substrate concentration, and inoculum. Journal of Cleaner Production, 434, 140407. DOI: 10.1016/j.jclepro.2023.140407
  • Li, C. & Fang, H.H.P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1- 39. DOI: 10.1080/10643380600729071
  • Liu, D., Li, R.Y., Ji, M. & Cai, Y.M. (2013). Enhanced hydrogen and methane production from sewage sludge by addition of cornstalk in two-stage fermentation process. Asian Journal of Chemistry, 25(12), 6535-6539. DOI: 10.14233/ajchem.2013.14347
  • Liu, D., Sun, Y., Li, Y. & Lu, Y. (2017). Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Scientific Reports, 7(1), 1-8. DOI: 10.1038/s41598-017-10191-7
  • Ma, K., Zhao, H., Zhang, C., Lu, Y. & Xing, X.H. (2012). Impairment of NADH dehydrogenase for increased hydrogen production and its effect on metabolic flux redistribution in wild strain and mutants of Enterobacter aerogenes. International Journal of Hydrogen Energy, 37(21), 15875- 15885. DOI: 10.1016/j.ijhydene.2012.08.017
  • Machhirake, N.P., Vanapalli, K.R., Kumar, S. & Mohanty, B. (2024). Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries. Environmental Research, 252, 119028. DOI: 10.1016/j.envres.2024.119028
  • Miranzadeh, M.B., Jafarsalehi, M., Akram, J., Ebrahimi, M., Mazaheri, A. & Mashayekh, M. (2024). Boosting biogas production in the wastewater treatment plants: A narrative review on co-digestion of sewage sludge with internal and external organic waste. Bioresource Technology Reports, 26, 101856. DOI: 10.1016/j.biteb.2024.101856
  • Park, J.H., Cheon, H.C., Yoon, J.J., Park, H.D. & Kim, S.H. (2013). Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. International Journal of Hydrogen Energy, 38(14), 6130-6136. DOI: 10.1016/j.ijhydene.2013.01.050
  • Ren, Y., Tang, S., Hong, F., Jiang, W., Liu, Z., Lu, H., … & Si, B. (2023). Effects of milli-magnetite on biohydrogen production from potato peels: Insight of metabolism mechanisms. Fuel, 348, 128576. DOI: 10.1016/j.fuel.2023.128576
  • Sarangi, P.K. & Nanda, S. (2020). Biohydrogen Production Through Dark Fermentation. Chemical Engineering & Technology, 43(4), 601- 612. DOI: 10.1002/ceat.201900452
  • Sato, O., Suzuki, Y., Sato, Y., Sasaki, S. & Sonoki, T. (2015). Water-insoluble material from apple pomace makes changes in intracellular NAD+/NADH ratio and pyrophosphate content and stimulates fermentative production of hydrogen. Journal of Bioscience and Bioengineering, 119(5), 543-547. DOI: 10.1016/j.jbiosc.2014.10.017
  • Sillero, L., Solera, R. & Perez, M. (2023). Effect of temperature on biohydrogen and biomethane production using a biochemical potential test with different mixtures of sewage sludge, vinasse and poultry manure. Journal of Cleaner Production, 382, 135237. DOI: 10.1016/j.jclepro.2022.135237
  • Singh, T., Alhazmi, A., Mohammad, A., Srivastava, N., Haque, S., Sharma, S., … & Gupta, V.K. (2021). Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. Bioresource Technology, 338, 125511. DOI: 10.1016/j.biortech.2021.125511
  • Taşkan, B., Köroğlu, E.O. & Taşkan, E. (2022). Cladophora sp. as a sustainable feedstock for dark fermentative biohydrogen production. International Journal of Hydrogen Energy, 47(34), 15410-15418. DOI: 10.1016/j.ijhydene.2022.03.024
  • Vardar-Schara, G., Maeda, T. & Wood, T.K. (2008). Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology, 1(2), 107. DOI: 10.1111/J.1751- 7915.2007.00009.x
  • Wainaina, S., Lukitawesa, Kumar Awasthi, M. & Taherzadeh, M.J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437. DOI: 10.1080/21655979.2019.1673937
  • Xiao, B.Y. & Liu, J.X. (2006). Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge. Journal of Environmental Sciences, 18(1), 6-12.
  • Xiao, B. & Liu, J. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chinese Science Bulletin, 54(12), 2038-2044. DOI: 10.1007/S11434-009-0100-z
  • Yang, G. & Wang, J. (2017). Fermentative hydrogen production from sewage sludge. Critical Reviews in Environmental Science and Technology, 47(14), 1219-1281. DOI: 10.1080/10643389.2017.1348107
  • Yang, G. & Wang, J. (2018). Various additives for improving dark fermentative hydrogen production: A review. Renewable and Sustainable Energy Reviews, 95, 130-146. DOI: 10.1016/j.rser.2018.07.029
  • Yang, G., Hu, Y. & Wang, J. (2019). Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresource Technology, 285, 121342. DOI: 10.1016/j.biortech.2019.121342
  • Yang, G. & Wang, J. (2019). Biohydrogen production by co-fermentation of sewage sludge and grass residue: Effect of various substrate concentrations. Fuel, 237, 1203-1208. DOI: 10.1016/j.fuel.2018.10.026
  • Yin, Y., Chen, Y. & Wang, J. (2021). Co-fermentation of sewage sludge and algae and Fe2+ addition for enhancing hydrogen production. International Journal of Hydrogen Energy, 46(13), 8950-8960. DOI: 10.1016/j.ijhydene.2021.01.009
  • Zhang, H., Fu, Z., Guan, D., Zhao, J., Wang, Y., Zhang, Q., … & Wang, D. (2023). A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect. Process Safety and Environmental Protection, 179, 546- 558. DOI: 10.1016/j.psep.2023.09.030
  • Zhou, J., Olson, D.G., Lanahan, A.A., Tian, L., Murphy, S.J.L., Lo, J. & Lynd, L.R. (2015). Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biotechnology for Biofuels, 8(1), 1-14. DOI: 10.1186/s13068-015-0304-1
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Doğal Kaynak Yönetimi, Çevre Yönetimi (Diğer)
Bölüm Makaleler
Yazarlar

Habibe Elif Gülşen Akbay 0000-0003-1144-9279

Proje Numarası 2023-1-AP1-4855
Erken Görünüm Tarihi 17 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 9 Ekim 2024
Kabul Tarihi 3 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

APA Gülşen Akbay, H. E. (2024). Arıtma Çamuru ve Gıda Endüstrisi Atıklarından Karanlık Fermentasyon ile Biyohidrojen Üretimi: Substrat Derişiminin Etkisi. Journal of Anatolian Environmental and Animal Sciences, 9(4), 623-631. https://doi.org/10.35229/jaes.1564156


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS