Araştırma Makalesi
BibTex RIS Kaynak Göster

Zebra Midyesinin (Dreissena polymorpha) Yağ Asidi Profili Ve Yağ Asidine Bağlı Besinsel Kalite Indekslerinin Değerlendirilmesi

Yıl 2025, Cilt: 10 Sayı: 1, 56 - 62
https://doi.org/10.35229/jaes.1571832

Öz

Esansiyel omega-3 çoklu doymamış yağ asitleri (n-3 PUFA'lar) insan sağlığı için hayati öneme sahiptir ve bir dizi rahatsızlığı önler; midyeler bu PUFA'ların iyi bir kaynağıdır. Bu çalışmanın amacı, yağ asidi bileşimini ve besin kalitesi parametrelerini ölçerek zebra midyesinin (Dressiana polymorpha) fonksiyonel bir gıda olarak potansiyelini değerlendirmektir. Zebra midyesi yağında çözücü ekstraksiyonla lipid miktarı, yağ asidi bileşimi ve besin kalitesi endeksleri belirlendi ve zebra midyesinin nutrasötik ve farmasötik olarak potansiyeli değerlendirildi. Zebra midyesi düşük lipid içeriğine rağmen insan sağlığına faydalı olan yağ asidi profilleri gösterdi. Zebra midyesindeki majör yağ asidi grubu SFA'lar olup bunu MUFA ve PUFA grupları izledi. EPA ve DHA miktarlarının toplamı 14.051.36 olarak bulundu. Ayrıca zebra midyesinin n6/n3 oranı 0.09 olarak bulundu. Zebra midyesinin PUFA/SFA oranı 0.36 olarak bulundu. AI, TI ve HH değerleri sırasıyla 0,60, 0,37 ve 1,09'du. Mevcut çalışma, zebra midyelerinin lipid kalitesini ve yararlı yağ asitlerini işlevsel diyet bileşenleri olarak değerlendirmeye işaret etmektedir.

Kaynakça

  • Biandolino, F., Prato, E., Grattagliano, A. & Parlapiano, I. (2023). Can Glyphosate and Temperature Affect the Nutritional Lipid Quality in the Mussel Mytilus galloprovincialis? Foods, 12, 1595. DOI: 10.3390/foods12081595
  • Bligh, G.E. & Dyer, J.W. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37,(8), 911-7. DOI: 10.1139/o59-099
  • Cavali, J., Marmentini, P.R., Filho, D.V.J., Pontuschka, B.R. & Schons, S.V. (2022). Fatty acid profile, omegas, and lipid quality in commercial cuts of tambaqui (Colossoma macropomum Cuvier, 1818) cultivated in ponds. Bol. Inst. Pesca, 48, e700. DOI: 10.20950/1678- 2305/bip.2022.48.e700
  • Chen, J. & Liu, H. (2020). Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci., 21, 5695. DOI: 10.3390/ijms21165695
  • Cherifi, H., Ajjabi, C.L. & Sadok, S. (2018). Nutritional value of the Tunisian mussel Mytilus galloprovincialis with a special emphasis on lipid quality. Food Chemistry, 268, 307-314. DOI: 10.1016/j.foodchem.2018.06.075
  • EFSA. (2010). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8(3),1461.
  • Fonseca, F.V., Duarte, A.I., Matos, R.A., Reis Santos, P. & Duarte, B. (2022). Fatty acid profiles as natural tracers of provenance and lipid quality indicators in illegally sourced fish and bivalves. Food Control, 134, 108735. DOI: 10.1016/j.foodcont.2021.108735
  • Haldar, A., Dey, K.T., Dhar, P. & Chakrabarti, J. (2014). Exploring the Nutritive Values of the Fresh Water Mussel Lamellidens marginalis as Potential Functional Food. Journal of Environmental Science, Toxicology and Food Technology, 8(8), 01-07.
  • Keskinbalta, A.M. & Çelik, Y.M. (2020). Proximate Composition of Freshwater Mussels (Unio Pictorum, Linnaeus 1758) in Karasustream, Sinop. Turkish Journal of Agriculture-Food Science and Technology, 8(9), 1948-1951. DOI: 10.24925/turjaf.v8i9.1948- 1951.3584
  • OIC. (2017). COI/T.20/Doc. No 33. Determination Of Fatty Acid Methyl Esters By Gas Chromatography, https://www.internationaloliveoil.org/wp- content/uploads/2019/11/COI-T.20-Doc.-No-33-Rev.- 1-2017.pdf
  • Ozogul, F., Cagalj, M., Simat, V., Ozogul, Y., Tkaczewska, J., Hassoun, A., Kaddour, A.A., Kuley, E., Rathod, B.N. & Phadke, G.G. (2021). Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science and Technology, 116, 559-582. DOI: 10.1016/j.tifs.2021.08.007
  • Moniruzzaman, M., Sku, S., Chowdhury, P., Tanu, B.M., Yeasmine, S., Hossen, N.M., Min, T., Bai, C.S. & Mahmud, Y. (2021). Nutritional evaluation of some economically important marine and freshwater mollusc species of Bangladesh. Heliyon, 7, e07088. DOI: 10.1016/j.heliyon.2021.e07088
  • Nalepa, F.T., Cavaletto, F.J., Ford, M., Gordon, M.V. & Wimmer, M. (1993). Seasonal and Annual Variation in Weight and Biochemical Content of the Zebra Mussel, Dreissena polymorpha, in Lake St. Clair. Journal of Great Lakes Research, 19(3), 541-552. DOI: 10.1016/S0380-1330(93)71240-X
  • Panayotova, V., Merdzhanova, A., Stancheva, R., Dobreva, A.D., Peycheva, K. & Makedonski, L. (2021). Farmed mussels (Mytilus galloprovincialis) from the Black Sea reveal seasonal differences in their neutral and polar lipid fatty acids profile. Regional Studies in Marine Science, 44, 101782. DOI: 10.1016/j.rsma.2021.101782
  • Peycheva, K., Panayotova, V., Stancheva, R., Makedonski, L., Merdzhanova, A., Cicero, N., Parrino, V. & Fazio, F. (2021). Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels (Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. Int. J. Environ. Res. Public Health, 18, 10023. DOI: 10.3390/ijerph181910023
  • Prato, E., Fanelli, G., Parlapiano, I. & Biandolino, F. (2020). Bioactive fatty acids in seafood from Ionian Sea and relation to dietary recommendations. International Journal of Food Sciences and Nutrition, 71(6), 693- 705. DOI: 10.1080/09637486.2020.1719388
  • Roy, V.C., Park, J. Ho, C.T. & Chun, B. (2022). Lipid Indexes and Quality Evaluation of Omega-3 Rich Oil from the Waste of Japanese Spanish Mackerel Extracted by Supercritical CO2. Marine Drugs, 20, 70. DOI: 10.3390/md20010070
  • Santos-Silva, J., Bessa, R.J.B. & Santos-Silva, F. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci., 77, 187. DOI: 10.1016/S0301- 6226(02)00059-3
  • Simat, V., Bogdanovic, T., Poljak, V. & Petricevic, S. (2015). Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: Effect of fish farming activities. Journal of Food Composition and Analysis, 40, 120-125. DOI: 10.1016/j.jfca.2014.12.026
  • Şereflişan, H. & Ersoy Altun, B. (2018). Amino Acid and Fatty Acid Composition of Freshwater Mussels, Anodonta pseudodopsis and Unio tigridis. Pakistan J. Zool., 50(6), 2153-2158. DOI: 10.17582/journal.pjz/2018.50.6.2153.21
  • Ulbricht, T.L. & Southgate, D.A. (1991). Coronary heart disease: seven dietary factors. Lancet, 338(8773), 985- 92. PMID: 1681350. DOI: 10.1016/0140- 6736(91)91846-m
  • Ullah, H., Gul, B., Khan, H. & Zeb, U. (2021). Effect of salt stress on proximate composition of duckweed (Lemna minor L.). Heliyon, 7, e07399. DOI: 10.1016/j.heliyon.2021.e07399
  • Zhukova, V.N. (2014). Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds. Mar. Drugs, 12, 4578-4592; DOI: 10.3390/md12084578
  • Zula, T.A. & Desta, T.D., (2021). Fatty Acid-Related Health Lipid Index of Raw and Fried Nile Tilapia (Oreochromis niloticus) Fish Muscle. Journal of Food Quality, 9. Article ID 6676528, DOI: 10.1155/2021/6676528
  • WHO. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. Geneva: WHO/FAO.

Evaluation Of Fatty Acid Profile and Fatty Acid-Related Nutritional Quality Indices Of Zebra Mussel (Dreissena polymorpha)

Yıl 2025, Cilt: 10 Sayı: 1, 56 - 62
https://doi.org/10.35229/jaes.1571832

Öz

Essential omega-3 polyunsaturated fatty acids (n-3 PUFAs) are vital to human health and prevent a range of ailments; mussels are a good source of these PUFAs. The objective of this study was to evaluate the potential of zebra mussel (Dressiana polymorpha) as a functional food by measuring the fatty acid composition and nutritional quality parameters. Lipid amount, fatty acid composition and nutritional quality indices was determined in the oil of zebra mussel with solvent extraction and the potential of zebra mussel as nutraceutical and pharmaceutical was evaluated. Although its low lipid content zebra mussel displayed FA profiles that were beneficial to human health. Major fatty acid group in the zebra mussel was SFAs and it was followed by MUFA and PUFA groups. Sum of EPA and DHA amounts were 14.051.36. Besides, n6/n3 ratio of zebra mussel was 0.09. PUFA/SFA ratio of zebra mussel was 0.36. AI, TI and HH values were 0.60, 0.37 and 1.09, respectively. The current study indicated the lipid quality and beneficial fatty acids of zebra mussels for evaluation as functional dietary components.

Kaynakça

  • Biandolino, F., Prato, E., Grattagliano, A. & Parlapiano, I. (2023). Can Glyphosate and Temperature Affect the Nutritional Lipid Quality in the Mussel Mytilus galloprovincialis? Foods, 12, 1595. DOI: 10.3390/foods12081595
  • Bligh, G.E. & Dyer, J.W. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37,(8), 911-7. DOI: 10.1139/o59-099
  • Cavali, J., Marmentini, P.R., Filho, D.V.J., Pontuschka, B.R. & Schons, S.V. (2022). Fatty acid profile, omegas, and lipid quality in commercial cuts of tambaqui (Colossoma macropomum Cuvier, 1818) cultivated in ponds. Bol. Inst. Pesca, 48, e700. DOI: 10.20950/1678- 2305/bip.2022.48.e700
  • Chen, J. & Liu, H. (2020). Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci., 21, 5695. DOI: 10.3390/ijms21165695
  • Cherifi, H., Ajjabi, C.L. & Sadok, S. (2018). Nutritional value of the Tunisian mussel Mytilus galloprovincialis with a special emphasis on lipid quality. Food Chemistry, 268, 307-314. DOI: 10.1016/j.foodchem.2018.06.075
  • EFSA. (2010). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8(3),1461.
  • Fonseca, F.V., Duarte, A.I., Matos, R.A., Reis Santos, P. & Duarte, B. (2022). Fatty acid profiles as natural tracers of provenance and lipid quality indicators in illegally sourced fish and bivalves. Food Control, 134, 108735. DOI: 10.1016/j.foodcont.2021.108735
  • Haldar, A., Dey, K.T., Dhar, P. & Chakrabarti, J. (2014). Exploring the Nutritive Values of the Fresh Water Mussel Lamellidens marginalis as Potential Functional Food. Journal of Environmental Science, Toxicology and Food Technology, 8(8), 01-07.
  • Keskinbalta, A.M. & Çelik, Y.M. (2020). Proximate Composition of Freshwater Mussels (Unio Pictorum, Linnaeus 1758) in Karasustream, Sinop. Turkish Journal of Agriculture-Food Science and Technology, 8(9), 1948-1951. DOI: 10.24925/turjaf.v8i9.1948- 1951.3584
  • OIC. (2017). COI/T.20/Doc. No 33. Determination Of Fatty Acid Methyl Esters By Gas Chromatography, https://www.internationaloliveoil.org/wp- content/uploads/2019/11/COI-T.20-Doc.-No-33-Rev.- 1-2017.pdf
  • Ozogul, F., Cagalj, M., Simat, V., Ozogul, Y., Tkaczewska, J., Hassoun, A., Kaddour, A.A., Kuley, E., Rathod, B.N. & Phadke, G.G. (2021). Recent developments in valorisation of bioactive ingredients in discard/seafood processing by-products. Trends in Food Science and Technology, 116, 559-582. DOI: 10.1016/j.tifs.2021.08.007
  • Moniruzzaman, M., Sku, S., Chowdhury, P., Tanu, B.M., Yeasmine, S., Hossen, N.M., Min, T., Bai, C.S. & Mahmud, Y. (2021). Nutritional evaluation of some economically important marine and freshwater mollusc species of Bangladesh. Heliyon, 7, e07088. DOI: 10.1016/j.heliyon.2021.e07088
  • Nalepa, F.T., Cavaletto, F.J., Ford, M., Gordon, M.V. & Wimmer, M. (1993). Seasonal and Annual Variation in Weight and Biochemical Content of the Zebra Mussel, Dreissena polymorpha, in Lake St. Clair. Journal of Great Lakes Research, 19(3), 541-552. DOI: 10.1016/S0380-1330(93)71240-X
  • Panayotova, V., Merdzhanova, A., Stancheva, R., Dobreva, A.D., Peycheva, K. & Makedonski, L. (2021). Farmed mussels (Mytilus galloprovincialis) from the Black Sea reveal seasonal differences in their neutral and polar lipid fatty acids profile. Regional Studies in Marine Science, 44, 101782. DOI: 10.1016/j.rsma.2021.101782
  • Peycheva, K., Panayotova, V., Stancheva, R., Makedonski, L., Merdzhanova, A., Cicero, N., Parrino, V. & Fazio, F. (2021). Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels (Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. Int. J. Environ. Res. Public Health, 18, 10023. DOI: 10.3390/ijerph181910023
  • Prato, E., Fanelli, G., Parlapiano, I. & Biandolino, F. (2020). Bioactive fatty acids in seafood from Ionian Sea and relation to dietary recommendations. International Journal of Food Sciences and Nutrition, 71(6), 693- 705. DOI: 10.1080/09637486.2020.1719388
  • Roy, V.C., Park, J. Ho, C.T. & Chun, B. (2022). Lipid Indexes and Quality Evaluation of Omega-3 Rich Oil from the Waste of Japanese Spanish Mackerel Extracted by Supercritical CO2. Marine Drugs, 20, 70. DOI: 10.3390/md20010070
  • Santos-Silva, J., Bessa, R.J.B. & Santos-Silva, F. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci., 77, 187. DOI: 10.1016/S0301- 6226(02)00059-3
  • Simat, V., Bogdanovic, T., Poljak, V. & Petricevic, S. (2015). Changes in fatty acid composition, atherogenic and thrombogenic health lipid indices and lipid stability of bogue (Boops boops Linnaeus, 1758) during storage on ice: Effect of fish farming activities. Journal of Food Composition and Analysis, 40, 120-125. DOI: 10.1016/j.jfca.2014.12.026
  • Şereflişan, H. & Ersoy Altun, B. (2018). Amino Acid and Fatty Acid Composition of Freshwater Mussels, Anodonta pseudodopsis and Unio tigridis. Pakistan J. Zool., 50(6), 2153-2158. DOI: 10.17582/journal.pjz/2018.50.6.2153.21
  • Ulbricht, T.L. & Southgate, D.A. (1991). Coronary heart disease: seven dietary factors. Lancet, 338(8773), 985- 92. PMID: 1681350. DOI: 10.1016/0140- 6736(91)91846-m
  • Ullah, H., Gul, B., Khan, H. & Zeb, U. (2021). Effect of salt stress on proximate composition of duckweed (Lemna minor L.). Heliyon, 7, e07399. DOI: 10.1016/j.heliyon.2021.e07399
  • Zhukova, V.N. (2014). Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds. Mar. Drugs, 12, 4578-4592; DOI: 10.3390/md12084578
  • Zula, T.A. & Desta, T.D., (2021). Fatty Acid-Related Health Lipid Index of Raw and Fried Nile Tilapia (Oreochromis niloticus) Fish Muscle. Journal of Food Quality, 9. Article ID 6676528, DOI: 10.1155/2021/6676528
  • WHO. (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. Geneva: WHO/FAO.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Avlanma Sonrası Balıkçılık Teknolojileri (Ulaşım dahil)
Bölüm Makaleler
Yazarlar

Nida Demirtaş Erol 0000-0001-8323-5689

Erken Görünüm Tarihi 23 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Ekim 2024
Kabul Tarihi 17 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Demirtaş Erol, N. (2025). Evaluation Of Fatty Acid Profile and Fatty Acid-Related Nutritional Quality Indices Of Zebra Mussel (Dreissena polymorpha). Journal of Anatolian Environmental and Animal Sciences, 10(1), 56-62. https://doi.org/10.35229/jaes.1571832


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS